Last active
November 18, 2017 21:55
-
-
Save belltailjp/33f1b5e16024a61ceca204406251e5ba to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
input: "data" | |
input_dim: 1 | |
input_dim: 3 | |
input_dim: 368 | |
input_dim: 368 | |
layer { | |
name: "conv1_1" | |
type: "Convolution" | |
bottom: "data" | |
top: "conv1_1" | |
param { | |
lr_mult: 1.0 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 2.0 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 64 | |
pad: 1 | |
kernel_size: 3 | |
weight_filler { | |
type: "gaussian" | |
std: 0.01 | |
} | |
bias_filler { | |
type: "constant" | |
} | |
} | |
} | |
layer { | |
name: "relu1_1" | |
type: "ReLU" | |
bottom: "conv1_1" | |
top: "conv1_1" | |
} | |
layer { | |
name: "conv1_2" | |
type: "Convolution" | |
bottom: "conv1_1" | |
top: "conv1_2" | |
param { | |
lr_mult: 1.0 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 2.0 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 64 | |
pad: 1 | |
kernel_size: 3 | |
weight_filler { | |
type: "gaussian" | |
std: 0.01 | |
} | |
bias_filler { | |
type: "constant" | |
} | |
} | |
} | |
layer { | |
name: "relu1_2" | |
type: "ReLU" | |
bottom: "conv1_2" | |
top: "conv1_2" | |
} | |
layer { | |
name: "pool1_stage1" | |
type: "Pooling" | |
bottom: "conv1_2" | |
top: "pool1_stage1" | |
pooling_param { | |
pool: MAX | |
kernel_size: 2 | |
stride: 2 | |
} | |
} | |
layer { | |
name: "conv2_1" | |
type: "Convolution" | |
bottom: "pool1_stage1" | |
top: "conv2_1" | |
param { | |
lr_mult: 1.0 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 2.0 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 128 | |
pad: 1 | |
kernel_size: 3 | |
weight_filler { | |
type: "gaussian" | |
std: 0.01 | |
} | |
bias_filler { | |
type: "constant" | |
} | |
} | |
} | |
layer { | |
name: "relu2_1" | |
type: "ReLU" | |
bottom: "conv2_1" | |
top: "conv2_1" | |
} | |
layer { | |
name: "conv2_2" | |
type: "Convolution" | |
bottom: "conv2_1" | |
top: "conv2_2" | |
param { | |
lr_mult: 1.0 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 2.0 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 128 | |
pad: 1 | |
kernel_size: 3 | |
weight_filler { | |
type: "gaussian" | |
std: 0.01 | |
} | |
bias_filler { | |
type: "constant" | |
} | |
} | |
} | |
layer { | |
name: "relu2_2" | |
type: "ReLU" | |
bottom: "conv2_2" | |
top: "conv2_2" | |
} | |
layer { | |
name: "pool2_stage1" | |
type: "Pooling" | |
bottom: "conv2_2" | |
top: "pool2_stage1" | |
pooling_param { | |
pool: MAX | |
kernel_size: 2 | |
stride: 2 | |
} | |
} | |
layer { | |
name: "conv3_1" | |
type: "Convolution" | |
bottom: "pool2_stage1" | |
top: "conv3_1" | |
param { | |
lr_mult: 1.0 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 2.0 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 256 | |
pad: 1 | |
kernel_size: 3 | |
weight_filler { | |
type: "gaussian" | |
std: 0.01 | |
} | |
bias_filler { | |
type: "constant" | |
} | |
} | |
} | |
layer { | |
name: "relu3_1" | |
type: "ReLU" | |
bottom: "conv3_1" | |
top: "conv3_1" | |
} | |
layer { | |
name: "conv3_2" | |
type: "Convolution" | |
bottom: "conv3_1" | |
top: "conv3_2" | |
param { | |
lr_mult: 1.0 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 2.0 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 256 | |
pad: 1 | |
kernel_size: 3 | |
weight_filler { | |
type: "gaussian" | |
std: 0.01 | |
} | |
bias_filler { | |
type: "constant" | |
} | |
} | |
} | |
layer { | |
name: "relu3_2" | |
type: "ReLU" | |
bottom: "conv3_2" | |
top: "conv3_2" | |
} | |
layer { | |
name: "conv3_3" | |
type: "Convolution" | |
bottom: "conv3_2" | |
top: "conv3_3" | |
param { | |
lr_mult: 1.0 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 2.0 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 256 | |
pad: 1 | |
kernel_size: 3 | |
weight_filler { | |
type: "gaussian" | |
std: 0.01 | |
} | |
bias_filler { | |
type: "constant" | |
} | |
} | |
} | |
layer { | |
name: "relu3_3" | |
type: "ReLU" | |
bottom: "conv3_3" | |
top: "conv3_3" | |
} | |
layer { | |
name: "conv3_4" | |
type: "Convolution" | |
bottom: "conv3_3" | |
top: "conv3_4" | |
param { | |
lr_mult: 1.0 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 2.0 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 256 | |
pad: 1 | |
kernel_size: 3 | |
weight_filler { | |
type: "gaussian" | |
std: 0.01 | |
} | |
bias_filler { | |
type: "constant" | |
} | |
} | |
} | |
layer { | |
name: "relu3_4" | |
type: "ReLU" | |
bottom: "conv3_4" | |
top: "conv3_4" | |
} | |
layer { | |
name: "pool3_stage1" | |
type: "Pooling" | |
bottom: "conv3_4" | |
top: "pool3_stage1" | |
pooling_param { | |
pool: MAX | |
kernel_size: 2 | |
stride: 2 | |
} | |
} | |
layer { | |
name: "conv4_1" | |
type: "Convolution" | |
bottom: "pool3_stage1" | |
top: "conv4_1" | |
param { | |
lr_mult: 1.0 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 2.0 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 512 | |
pad: 1 | |
kernel_size: 3 | |
weight_filler { | |
type: "gaussian" | |
std: 0.01 | |
} | |
bias_filler { | |
type: "constant" | |
} | |
} | |
} | |
layer { | |
name: "relu4_1" | |
type: "ReLU" | |
bottom: "conv4_1" | |
top: "conv4_1" | |
} | |
layer { | |
name: "conv4_2" | |
type: "Convolution" | |
bottom: "conv4_1" | |
top: "conv4_2" | |
param { | |
lr_mult: 1.0 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 2.0 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 512 | |
pad: 1 | |
kernel_size: 3 | |
weight_filler { | |
type: "gaussian" | |
std: 0.01 | |
} | |
bias_filler { | |
type: "constant" | |
} | |
} | |
} | |
layer { | |
name: "relu4_2" | |
type: "ReLU" | |
bottom: "conv4_2" | |
top: "conv4_2" | |
} | |
layer { | |
name: "conv4_3_CPM" | |
type: "Convolution" | |
bottom: "conv4_2" | |
top: "conv4_3_CPM" | |
param { | |
lr_mult: 1.0 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 2.0 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 256 | |
pad: 1 | |
kernel_size: 3 | |
weight_filler { | |
type: "gaussian" | |
std: 0.01 | |
} | |
bias_filler { | |
type: "constant" | |
} | |
} | |
} | |
layer { | |
name: "relu4_3_CPM" | |
type: "ReLU" | |
bottom: "conv4_3_CPM" | |
top: "conv4_3_CPM" | |
} | |
layer { | |
name: "conv4_4_CPM" | |
type: "Convolution" | |
bottom: "conv4_3_CPM" | |
top: "conv4_4_CPM" | |
param { | |
lr_mult: 1.0 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 2.0 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 128 | |
pad: 1 | |
kernel_size: 3 | |
weight_filler { | |
type: "gaussian" | |
std: 0.01 | |
} | |
bias_filler { | |
type: "constant" | |
} | |
} | |
} | |
layer { | |
name: "relu4_4_CPM" | |
type: "ReLU" | |
bottom: "conv4_4_CPM" | |
top: "conv4_4_CPM" | |
} | |
layer { | |
name: "conv5_1_CPM_L1" | |
type: "Convolution" | |
bottom: "conv4_4_CPM" | |
top: "conv5_1_CPM_L1" | |
param { | |
lr_mult: 1.0 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 2.0 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 128 | |
pad: 1 | |
kernel_size: 3 | |
weight_filler { | |
type: "gaussian" | |
std: 0.01 | |
} | |
bias_filler { | |
type: "constant" | |
} | |
} | |
} | |
layer { | |
name: "relu5_1_CPM_L1" | |
type: "ReLU" | |
bottom: "conv5_1_CPM_L1" | |
top: "conv5_1_CPM_L1" | |
} | |
layer { | |
name: "conv5_1_CPM_L2" | |
type: "Convolution" | |
bottom: "conv4_4_CPM" | |
top: "conv5_1_CPM_L2" | |
param { | |
lr_mult: 1.0 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 2.0 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 128 | |
pad: 1 | |
kernel_size: 3 | |
weight_filler { | |
type: "gaussian" | |
std: 0.01 | |
} | |
bias_filler { | |
type: "constant" | |
} | |
} | |
} | |
layer { | |
name: "relu5_1_CPM_L2" | |
type: "ReLU" | |
bottom: "conv5_1_CPM_L2" | |
top: "conv5_1_CPM_L2" | |
} | |
layer { | |
name: "conv5_2_CPM_L1" | |
type: "Convolution" | |
bottom: "conv5_1_CPM_L1" | |
top: "conv5_2_CPM_L1" | |
param { | |
lr_mult: 1.0 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 2.0 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 128 | |
pad: 1 | |
kernel_size: 3 | |
weight_filler { | |
type: "gaussian" | |
std: 0.01 | |
} | |
bias_filler { | |
type: "constant" | |
} | |
} | |
} | |
layer { | |
name: "relu5_2_CPM_L1" | |
type: "ReLU" | |
bottom: "conv5_2_CPM_L1" | |
top: "conv5_2_CPM_L1" | |
} | |
layer { | |
name: "conv5_2_CPM_L2" | |
type: "Convolution" | |
bottom: "conv5_1_CPM_L2" | |
top: "conv5_2_CPM_L2" | |
param { | |
lr_mult: 1.0 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 2.0 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 128 | |
pad: 1 | |
kernel_size: 3 | |
weight_filler { | |
type: "gaussian" | |
std: 0.01 | |
} | |
bias_filler { | |
type: "constant" | |
} | |
} | |
} | |
layer { | |
name: "relu5_2_CPM_L2" | |
type: "ReLU" | |
bottom: "conv5_2_CPM_L2" | |
top: "conv5_2_CPM_L2" | |
} | |
layer { | |
name: "conv5_3_CPM_L1" | |
type: "Convolution" | |
bottom: "conv5_2_CPM_L1" | |
top: "conv5_3_CPM_L1" | |
param { | |
lr_mult: 1.0 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 2.0 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 128 | |
pad: 1 | |
kernel_size: 3 | |
weight_filler { | |
type: "gaussian" | |
std: 0.01 | |
} | |
bias_filler { | |
type: "constant" | |
} | |
} | |
} | |
layer { | |
name: "relu5_3_CPM_L1" | |
type: "ReLU" | |
bottom: "conv5_3_CPM_L1" | |
top: "conv5_3_CPM_L1" | |
} | |
layer { | |
name: "conv5_3_CPM_L2" | |
type: "Convolution" | |
bottom: "conv5_2_CPM_L2" | |
top: "conv5_3_CPM_L2" | |
param { | |
lr_mult: 1.0 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 2.0 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 128 | |
pad: 1 | |
kernel_size: 3 | |
weight_filler { | |
type: "gaussian" | |
std: 0.01 | |
} | |
bias_filler { | |
type: "constant" | |
} | |
} | |
} | |
layer { | |
name: "relu5_3_CPM_L2" | |
type: "ReLU" | |
bottom: "conv5_3_CPM_L2" | |
top: "conv5_3_CPM_L2" | |
} | |
layer { | |
name: "conv5_4_CPM_L1" | |
type: "Convolution" | |
bottom: "conv5_3_CPM_L1" | |
top: "conv5_4_CPM_L1" | |
param { | |
lr_mult: 1.0 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 2.0 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 512 | |
pad: 0 | |
kernel_size: 1 | |
weight_filler { | |
type: "gaussian" | |
std: 0.01 | |
} | |
bias_filler { | |
type: "constant" | |
} | |
} | |
} | |
layer { | |
name: "relu5_4_CPM_L1" | |
type: "ReLU" | |
bottom: "conv5_4_CPM_L1" | |
top: "conv5_4_CPM_L1" | |
} | |
layer { | |
name: "conv5_4_CPM_L2" | |
type: "Convolution" | |
bottom: "conv5_3_CPM_L2" | |
top: "conv5_4_CPM_L2" | |
param { | |
lr_mult: 1.0 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 2.0 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 512 | |
pad: 0 | |
kernel_size: 1 | |
weight_filler { | |
type: "gaussian" | |
std: 0.01 | |
} | |
bias_filler { | |
type: "constant" | |
} | |
} | |
} | |
layer { | |
name: "relu5_4_CPM_L2" | |
type: "ReLU" | |
bottom: "conv5_4_CPM_L2" | |
top: "conv5_4_CPM_L2" | |
} | |
layer { | |
name: "conv5_5_CPM_L1" | |
type: "Convolution" | |
bottom: "conv5_4_CPM_L1" | |
top: "conv5_5_CPM_L1" | |
param { | |
lr_mult: 1.0 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 2.0 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 38 | |
pad: 0 | |
kernel_size: 1 | |
weight_filler { | |
type: "gaussian" | |
std: 0.01 | |
} | |
bias_filler { | |
type: "constant" | |
} | |
} | |
} | |
layer { | |
name: "conv5_5_CPM_L2" | |
type: "Convolution" | |
bottom: "conv5_4_CPM_L2" | |
top: "conv5_5_CPM_L2" | |
param { | |
lr_mult: 1.0 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 2.0 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 19 | |
pad: 0 | |
kernel_size: 1 | |
weight_filler { | |
type: "gaussian" | |
std: 0.01 | |
} | |
bias_filler { | |
type: "constant" | |
} | |
} | |
} | |
layer { | |
name: "concat_stage2" | |
type: "Concat" | |
bottom: "conv5_5_CPM_L1" | |
bottom: "conv5_5_CPM_L2" | |
bottom: "conv4_4_CPM" | |
top: "concat_stage2" | |
concat_param { | |
axis: 1 | |
} | |
} | |
layer { | |
name: "Mconv1_stage2_L1" | |
type: "Convolution" | |
bottom: "concat_stage2" | |
top: "Mconv1_stage2_L1" | |
param { | |
lr_mult: 4.0 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 8.0 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 128 | |
pad: 3 | |
kernel_size: 7 | |
weight_filler { | |
type: "gaussian" | |
std: 0.01 | |
} | |
bias_filler { | |
type: "constant" | |
} | |
} | |
} | |
layer { | |
name: "Mrelu1_stage2_L1" | |
type: "ReLU" | |
bottom: "Mconv1_stage2_L1" | |
top: "Mconv1_stage2_L1" | |
} | |
layer { | |
name: "Mconv1_stage2_L2" | |
type: "Convolution" | |
bottom: "concat_stage2" | |
top: "Mconv1_stage2_L2" | |
param { | |
lr_mult: 4.0 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 8.0 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 128 | |
pad: 3 | |
kernel_size: 7 | |
weight_filler { | |
type: "gaussian" | |
std: 0.01 | |
} | |
bias_filler { | |
type: "constant" | |
} | |
} | |
} | |
layer { | |
name: "Mrelu1_stage2_L2" | |
type: "ReLU" | |
bottom: "Mconv1_stage2_L2" | |
top: "Mconv1_stage2_L2" | |
} | |
layer { | |
name: "Mconv2_stage2_L1" | |
type: "Convolution" | |
bottom: "Mconv1_stage2_L1" | |
top: "Mconv2_stage2_L1" | |
param { | |
lr_mult: 4.0 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 8.0 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 128 | |
pad: 3 | |
kernel_size: 7 | |
weight_filler { | |
type: "gaussian" | |
std: 0.01 | |
} | |
bias_filler { | |
type: "constant" | |
} | |
} | |
} | |
layer { | |
name: "Mrelu2_stage2_L1" | |
type: "ReLU" | |
bottom: "Mconv2_stage2_L1" | |
top: "Mconv2_stage2_L1" | |
} | |
layer { | |
name: "Mconv2_stage2_L2" | |
type: "Convolution" | |
bottom: "Mconv1_stage2_L2" | |
top: "Mconv2_stage2_L2" | |
param { | |
lr_mult: 4.0 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 8.0 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 128 | |
pad: 3 | |
kernel_size: 7 | |
weight_filler { | |
type: "gaussian" | |
std: 0.01 | |
} | |
bias_filler { | |
type: "constant" | |
} | |
} | |
} | |
layer { | |
name: "Mrelu2_stage2_L2" | |
type: "ReLU" | |
bottom: "Mconv2_stage2_L2" | |
top: "Mconv2_stage2_L2" | |
} | |
layer { | |
name: "Mconv3_stage2_L1" | |
type: "Convolution" | |
bottom: "Mconv2_stage2_L1" | |
top: "Mconv3_stage2_L1" | |
param { | |
lr_mult: 4.0 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 8.0 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 128 | |
pad: 3 | |
kernel_size: 7 | |
weight_filler { | |
type: "gaussian" | |
std: 0.01 | |
} | |
bias_filler { | |
type: "constant" | |
} | |
} | |
} | |
layer { | |
name: "Mrelu3_stage2_L1" | |
type: "ReLU" | |
bottom: "Mconv3_stage2_L1" | |
top: "Mconv3_stage2_L1" | |
} | |
layer { | |
name: "Mconv3_stage2_L2" | |
type: "Convolution" | |
bottom: "Mconv2_stage2_L2" | |
top: "Mconv3_stage2_L2" | |
param { | |
lr_mult: 4.0 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 8.0 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 128 | |
pad: 3 | |
kernel_size: 7 | |
weight_filler { | |
type: "gaussian" | |
std: 0.01 | |
} | |
bias_filler { | |
type: "constant" | |
} | |
} | |
} | |
layer { | |
name: "Mrelu3_stage2_L2" | |
type: "ReLU" | |
bottom: "Mconv3_stage2_L2" | |
top: "Mconv3_stage2_L2" | |
} | |
layer { | |
name: "Mconv4_stage2_L1" | |
type: "Convolution" | |
bottom: "Mconv3_stage2_L1" | |
top: "Mconv4_stage2_L1" | |
param { | |
lr_mult: 4.0 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 8.0 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 128 | |
pad: 3 | |
kernel_size: 7 | |
weight_filler { | |
type: "gaussian" | |
std: 0.01 | |
} | |
bias_filler { | |
type: "constant" | |
} | |
} | |
} | |
layer { | |
name: "Mrelu4_stage2_L1" | |
type: "ReLU" | |
bottom: "Mconv4_stage2_L1" | |
top: "Mconv4_stage2_L1" | |
} | |
layer { | |
name: "Mconv4_stage2_L2" | |
type: "Convolution" | |
bottom: "Mconv3_stage2_L2" | |
top: "Mconv4_stage2_L2" | |
param { | |
lr_mult: 4.0 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 8.0 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 128 | |
pad: 3 | |
kernel_size: 7 | |
weight_filler { | |
type: "gaussian" | |
std: 0.01 | |
} | |
bias_filler { | |
type: "constant" | |
} | |
} | |
} | |
layer { | |
name: "Mrelu4_stage2_L2" | |
type: "ReLU" | |
bottom: "Mconv4_stage2_L2" | |
top: "Mconv4_stage2_L2" | |
} | |
layer { | |
name: "Mconv5_stage2_L1" | |
type: "Convolution" | |
bottom: "Mconv4_stage2_L1" | |
top: "Mconv5_stage2_L1" | |
param { | |
lr_mult: 4.0 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 8.0 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 128 | |
pad: 3 | |
kernel_size: 7 | |
weight_filler { | |
type: "gaussian" | |
std: 0.01 | |
} | |
bias_filler { | |
type: "constant" | |
} | |
} | |
} | |
layer { | |
name: "Mrelu5_stage2_L1" | |
type: "ReLU" | |
bottom: "Mconv5_stage2_L1" | |
top: "Mconv5_stage2_L1" | |
} | |
layer { | |
name: "Mconv5_stage2_L2" | |
type: "Convolution" | |
bottom: "Mconv4_stage2_L2" | |
top: "Mconv5_stage2_L2" | |
param { | |
lr_mult: 4.0 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 8.0 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 128 | |
pad: 3 | |
kernel_size: 7 | |
weight_filler { | |
type: "gaussian" | |
std: 0.01 | |
} | |
bias_filler { | |
type: "constant" | |
} | |
} | |
} | |
layer { | |
name: "Mrelu5_stage2_L2" | |
type: "ReLU" | |
bottom: "Mconv5_stage2_L2" | |
top: "Mconv5_stage2_L2" | |
} | |
layer { | |
name: "Mconv6_stage2_L1" | |
type: "Convolution" | |
bottom: "Mconv5_stage2_L1" | |
top: "Mconv6_stage2_L1" | |
param { | |
lr_mult: 4.0 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 8.0 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 128 | |
pad: 0 | |
kernel_size: 1 | |
weight_filler { | |
type: "gaussian" | |
std: 0.01 | |
} | |
bias_filler { | |
type: "constant" | |
} | |
} | |
} | |
layer { | |
name: "Mrelu6_stage2_L1" | |
type: "ReLU" | |
bottom: "Mconv6_stage2_L1" | |
top: "Mconv6_stage2_L1" | |
} | |
layer { | |
name: "Mconv6_stage2_L2" | |
type: "Convolution" | |
bottom: "Mconv5_stage2_L2" | |
top: "Mconv6_stage2_L2" | |
param { | |
lr_mult: 4.0 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 8.0 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 128 | |
pad: 0 | |
kernel_size: 1 | |
weight_filler { | |
type: "gaussian" | |
std: 0.01 | |
} | |
bias_filler { | |
type: "constant" | |
} | |
} | |
} | |
layer { | |
name: "Mrelu6_stage2_L2" | |
type: "ReLU" | |
bottom: "Mconv6_stage2_L2" | |
top: "Mconv6_stage2_L2" | |
} | |
layer { | |
name: "Mconv7_stage2_L1" | |
type: "Convolution" | |
bottom: "Mconv6_stage2_L1" | |
top: "Mconv7_stage2_L1" | |
param { | |
lr_mult: 4.0 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 8.0 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 38 | |
pad: 0 | |
kernel_size: 1 | |
weight_filler { | |
type: "gaussian" | |
std: 0.01 | |
} | |
bias_filler { | |
type: "constant" | |
} | |
} | |
} | |
layer { | |
name: "Mconv7_stage2_L2" | |
type: "Convolution" | |
bottom: "Mconv6_stage2_L2" | |
top: "Mconv7_stage2_L2" | |
param { | |
lr_mult: 4.0 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 8.0 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 19 | |
pad: 0 | |
kernel_size: 1 | |
weight_filler { | |
type: "gaussian" | |
std: 0.01 | |
} | |
bias_filler { | |
type: "constant" | |
} | |
} | |
} | |
layer { | |
name: "concat_stage3" | |
type: "Concat" | |
bottom: "Mconv7_stage2_L1" | |
bottom: "Mconv7_stage2_L2" | |
bottom: "conv4_4_CPM" | |
top: "concat_stage3" | |
concat_param { | |
axis: 1 | |
} | |
} | |
layer { | |
name: "Mconv1_stage3_L1" | |
type: "Convolution" | |
bottom: "concat_stage3" | |
top: "Mconv1_stage3_L1" | |
param { | |
lr_mult: 4.0 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 8.0 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 128 | |
pad: 3 | |
kernel_size: 7 | |
weight_filler { | |
type: "gaussian" | |
std: 0.01 | |
} | |
bias_filler { | |
type: "constant" | |
} | |
} | |
} | |
layer { | |
name: "Mrelu1_stage3_L1" | |
type: "ReLU" | |
bottom: "Mconv1_stage3_L1" | |
top: "Mconv1_stage3_L1" | |
} | |
layer { | |
name: "Mconv1_stage3_L2" | |
type: "Convolution" | |
bottom: "concat_stage3" | |
top: "Mconv1_stage3_L2" | |
param { | |
lr_mult: 4.0 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 8.0 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 128 | |
pad: 3 | |
kernel_size: 7 | |
weight_filler { | |
type: "gaussian" | |
std: 0.01 | |
} | |
bias_filler { | |
type: "constant" | |
} | |
} | |
} | |
layer { | |
name: "Mrelu1_stage3_L2" | |
type: "ReLU" | |
bottom: "Mconv1_stage3_L2" | |
top: "Mconv1_stage3_L2" | |
} | |
layer { | |
name: "Mconv2_stage3_L1" | |
type: "Convolution" | |
bottom: "Mconv1_stage3_L1" | |
top: "Mconv2_stage3_L1" | |
param { | |
lr_mult: 4.0 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 8.0 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 128 | |
pad: 3 | |
kernel_size: 7 | |
weight_filler { | |
type: "gaussian" | |
std: 0.01 | |
} | |
bias_filler { | |
type: "constant" | |
} | |
} | |
} | |
layer { | |
name: "Mrelu2_stage3_L1" | |
type: "ReLU" | |
bottom: "Mconv2_stage3_L1" | |
top: "Mconv2_stage3_L1" | |
} | |
layer { | |
name: "Mconv2_stage3_L2" | |
type: "Convolution" | |
bottom: "Mconv1_stage3_L2" | |
top: "Mconv2_stage3_L2" | |
param { | |
lr_mult: 4.0 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 8.0 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 128 | |
pad: 3 | |
kernel_size: 7 | |
weight_filler { | |
type: "gaussian" | |
std: 0.01 | |
} | |
bias_filler { | |
type: "constant" | |
} | |
} | |
} | |
layer { | |
name: "Mrelu2_stage3_L2" | |
type: "ReLU" | |
bottom: "Mconv2_stage3_L2" | |
top: "Mconv2_stage3_L2" | |
} | |
layer { | |
name: "Mconv3_stage3_L1" | |
type: "Convolution" | |
bottom: "Mconv2_stage3_L1" | |
top: "Mconv3_stage3_L1" | |
param { | |
lr_mult: 4.0 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 8.0 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 128 | |
pad: 3 | |
kernel_size: 7 | |
weight_filler { | |
type: "gaussian" | |
std: 0.01 | |
} | |
bias_filler { | |
type: "constant" | |
} | |
} | |
} | |
layer { | |
name: "Mrelu3_stage3_L1" | |
type: "ReLU" | |
bottom: "Mconv3_stage3_L1" | |
top: "Mconv3_stage3_L1" | |
} | |
layer { | |
name: "Mconv3_stage3_L2" | |
type: "Convolution" | |
bottom: "Mconv2_stage3_L2" | |
top: "Mconv3_stage3_L2" | |
param { | |
lr_mult: 4.0 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 8.0 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 128 | |
pad: 3 | |
kernel_size: 7 | |
weight_filler { | |
type: "gaussian" | |
std: 0.01 | |
} | |
bias_filler { | |
type: "constant" | |
} | |
} | |
} | |
layer { | |
name: "Mrelu3_stage3_L2" | |
type: "ReLU" | |
bottom: "Mconv3_stage3_L2" | |
top: "Mconv3_stage3_L2" | |
} | |
layer { | |
name: "Mconv4_stage3_L1" | |
type: "Convolution" | |
bottom: "Mconv3_stage3_L1" | |
top: "Mconv4_stage3_L1" | |
param { | |
lr_mult: 4.0 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 8.0 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 128 | |
pad: 3 | |
kernel_size: 7 | |
weight_filler { | |
type: "gaussian" | |
std: 0.01 | |
} | |
bias_filler { | |
type: "constant" | |
} | |
} | |
} | |
layer { | |
name: "Mrelu4_stage3_L1" | |
type: "ReLU" | |
bottom: "Mconv4_stage3_L1" | |
top: "Mconv4_stage3_L1" | |
} | |
layer { | |
name: "Mconv4_stage3_L2" | |
type: "Convolution" | |
bottom: "Mconv3_stage3_L2" | |
top: "Mconv4_stage3_L2" | |
param { | |
lr_mult: 4.0 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 8.0 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 128 | |
pad: 3 | |
kernel_size: 7 | |
weight_filler { | |
type: "gaussian" | |
std: 0.01 | |
} | |
bias_filler { | |
type: "constant" | |
} | |
} | |
} | |
layer { | |
name: "Mrelu4_stage3_L2" | |
type: "ReLU" | |
bottom: "Mconv4_stage3_L2" | |
top: "Mconv4_stage3_L2" | |
} | |
layer { | |
name: "Mconv5_stage3_L1" | |
type: "Convolution" | |
bottom: "Mconv4_stage3_L1" | |
top: "Mconv5_stage3_L1" | |
param { | |
lr_mult: 4.0 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 8.0 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 128 | |
pad: 3 | |
kernel_size: 7 | |
weight_filler { | |
type: "gaussian" | |
std: 0.01 | |
} | |
bias_filler { | |
type: "constant" | |
} | |
} | |
} | |
layer { | |
name: "Mrelu5_stage3_L1" | |
type: "ReLU" | |
bottom: "Mconv5_stage3_L1" | |
top: "Mconv5_stage3_L1" | |
} | |
layer { | |
name: "Mconv5_stage3_L2" | |
type: "Convolution" | |
bottom: "Mconv4_stage3_L2" | |
top: "Mconv5_stage3_L2" | |
param { | |
lr_mult: 4.0 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 8.0 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 128 | |
pad: 3 | |
kernel_size: 7 | |
weight_filler { | |
type: "gaussian" | |
std: 0.01 | |
} | |
bias_filler { | |
type: "constant" | |
} | |
} | |
} | |
layer { | |
name: "Mrelu5_stage3_L2" | |
type: "ReLU" | |
bottom: "Mconv5_stage3_L2" | |
top: "Mconv5_stage3_L2" | |
} | |
layer { | |
name: "Mconv6_stage3_L1" | |
type: "Convolution" | |
bottom: "Mconv5_stage3_L1" | |
top: "Mconv6_stage3_L1" | |
param { | |
lr_mult: 4.0 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 8.0 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 128 | |
pad: 0 | |
kernel_size: 1 | |
weight_filler { | |
type: "gaussian" | |
std: 0.01 | |
} | |
bias_filler { | |
type: "constant" | |
} | |
} | |
} | |
layer { | |
name: "Mrelu6_stage3_L1" | |
type: "ReLU" | |
bottom: "Mconv6_stage3_L1" | |
top: "Mconv6_stage3_L1" | |
} | |
layer { | |
name: "Mconv6_stage3_L2" | |
type: "Convolution" | |
bottom: "Mconv5_stage3_L2" | |
top: "Mconv6_stage3_L2" | |
param { | |
lr_mult: 4.0 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 8.0 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 128 | |
pad: 0 | |
kernel_size: 1 | |
weight_filler { | |
type: "gaussian" | |
std: 0.01 | |
} | |
bias_filler { | |
type: "constant" | |
} | |
} | |
} | |
layer { | |
name: "Mrelu6_stage3_L2" | |
type: "ReLU" | |
bottom: "Mconv6_stage3_L2" | |
top: "Mconv6_stage3_L2" | |
} | |
layer { | |
name: "Mconv7_stage3_L1" | |
type: "Convolution" | |
bottom: "Mconv6_stage3_L1" | |
top: "Mconv7_stage3_L1" | |
param { | |
lr_mult: 4.0 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 8.0 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 38 | |
pad: 0 | |
kernel_size: 1 | |
weight_filler { | |
type: "gaussian" | |
std: 0.01 | |
} | |
bias_filler { | |
type: "constant" | |
} | |
} | |
} | |
layer { | |
name: "Mconv7_stage3_L2" | |
type: "Convolution" | |
bottom: "Mconv6_stage3_L2" | |
top: "Mconv7_stage3_L2" | |
param { | |
lr_mult: 4.0 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 8.0 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 19 | |
pad: 0 | |
kernel_size: 1 | |
weight_filler { | |
type: "gaussian" | |
std: 0.01 | |
} | |
bias_filler { | |
type: "constant" | |
} | |
} | |
} | |
layer { | |
name: "concat_stage4" | |
type: "Concat" | |
bottom: "Mconv7_stage3_L1" | |
bottom: "Mconv7_stage3_L2" | |
bottom: "conv4_4_CPM" | |
top: "concat_stage4" | |
concat_param { | |
axis: 1 | |
} | |
} | |
layer { | |
name: "Mconv1_stage4_L1" | |
type: "Convolution" | |
bottom: "concat_stage4" | |
top: "Mconv1_stage4_L1" | |
param { | |
lr_mult: 4.0 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 8.0 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 128 | |
pad: 3 | |
kernel_size: 7 | |
weight_filler { | |
type: "gaussian" | |
std: 0.01 | |
} | |
bias_filler { | |
type: "constant" | |
} | |
} | |
} | |
layer { | |
name: "Mrelu1_stage4_L1" | |
type: "ReLU" | |
bottom: "Mconv1_stage4_L1" | |
top: "Mconv1_stage4_L1" | |
} | |
layer { | |
name: "Mconv1_stage4_L2" | |
type: "Convolution" | |
bottom: "concat_stage4" | |
top: "Mconv1_stage4_L2" | |
param { | |
lr_mult: 4.0 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 8.0 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 128 | |
pad: 3 | |
kernel_size: 7 | |
weight_filler { | |
type: "gaussian" | |
std: 0.01 | |
} | |
bias_filler { | |
type: "constant" | |
} | |
} | |
} | |
layer { | |
name: "Mrelu1_stage4_L2" | |
type: "ReLU" | |
bottom: "Mconv1_stage4_L2" | |
top: "Mconv1_stage4_L2" | |
} | |
layer { | |
name: "Mconv2_stage4_L1" | |
type: "Convolution" | |
bottom: "Mconv1_stage4_L1" | |
top: "Mconv2_stage4_L1" | |
param { | |
lr_mult: 4.0 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 8.0 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 128 | |
pad: 3 | |
kernel_size: 7 | |
weight_filler { | |
type: "gaussian" | |
std: 0.01 | |
} | |
bias_filler { | |
type: "constant" | |
} | |
} | |
} | |
layer { | |
name: "Mrelu2_stage4_L1" | |
type: "ReLU" | |
bottom: "Mconv2_stage4_L1" | |
top: "Mconv2_stage4_L1" | |
} | |
layer { | |
name: "Mconv2_stage4_L2" | |
type: "Convolution" | |
bottom: "Mconv1_stage4_L2" | |
top: "Mconv2_stage4_L2" | |
param { | |
lr_mult: 4.0 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 8.0 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 128 | |
pad: 3 | |
kernel_size: 7 | |
weight_filler { | |
type: "gaussian" | |
std: 0.01 | |
} | |
bias_filler { | |
type: "constant" | |
} | |
} | |
} | |
layer { | |
name: "Mrelu2_stage4_L2" | |
type: "ReLU" | |
bottom: "Mconv2_stage4_L2" | |
top: "Mconv2_stage4_L2" | |
} | |
layer { | |
name: "Mconv3_stage4_L1" | |
type: "Convolution" | |
bottom: "Mconv2_stage4_L1" | |
top: "Mconv3_stage4_L1" | |
param { | |
lr_mult: 4.0 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 8.0 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 128 | |
pad: 3 | |
kernel_size: 7 | |
weight_filler { | |
type: "gaussian" | |
std: 0.01 | |
} | |
bias_filler { | |
type: "constant" | |
} | |
} | |
} | |
layer { | |
name: "Mrelu3_stage4_L1" | |
type: "ReLU" | |
bottom: "Mconv3_stage4_L1" | |
top: "Mconv3_stage4_L1" | |
} | |
layer { | |
name: "Mconv3_stage4_L2" | |
type: "Convolution" | |
bottom: "Mconv2_stage4_L2" | |
top: "Mconv3_stage4_L2" | |
param { | |
lr_mult: 4.0 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 8.0 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 128 | |
pad: 3 | |
kernel_size: 7 | |
weight_filler { | |
type: "gaussian" | |
std: 0.01 | |
} | |
bias_filler { | |
type: "constant" | |
} | |
} | |
} | |
layer { | |
name: "Mrelu3_stage4_L2" | |
type: "ReLU" | |
bottom: "Mconv3_stage4_L2" | |
top: "Mconv3_stage4_L2" | |
} | |
layer { | |
name: "Mconv4_stage4_L1" | |
type: "Convolution" | |
bottom: "Mconv3_stage4_L1" | |
top: "Mconv4_stage4_L1" | |
param { | |
lr_mult: 4.0 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 8.0 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 128 | |
pad: 3 | |
kernel_size: 7 | |
weight_filler { | |
type: "gaussian" | |
std: 0.01 | |
} | |
bias_filler { | |
type: "constant" | |
} | |
} | |
} | |
layer { | |
name: "Mrelu4_stage4_L1" | |
type: "ReLU" | |
bottom: "Mconv4_stage4_L1" | |
top: "Mconv4_stage4_L1" | |
} | |
layer { | |
name: "Mconv4_stage4_L2" | |
type: "Convolution" | |
bottom: "Mconv3_stage4_L2" | |
top: "Mconv4_stage4_L2" | |
param { | |
lr_mult: 4.0 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 8.0 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 128 | |
pad: 3 | |
kernel_size: 7 | |
weight_filler { | |
type: "gaussian" | |
std: 0.01 | |
} | |
bias_filler { | |
type: "constant" | |
} | |
} | |
} | |
layer { | |
name: "Mrelu4_stage4_L2" | |
type: "ReLU" | |
bottom: "Mconv4_stage4_L2" | |
top: "Mconv4_stage4_L2" | |
} | |
layer { | |
name: "Mconv5_stage4_L1" | |
type: "Convolution" | |
bottom: "Mconv4_stage4_L1" | |
top: "Mconv5_stage4_L1" | |
param { | |
lr_mult: 4.0 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 8.0 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 128 | |
pad: 3 | |
kernel_size: 7 | |
weight_filler { | |
type: "gaussian" | |
std: 0.01 | |
} | |
bias_filler { | |
type: "constant" | |
} | |
} | |
} | |
layer { | |
name: "Mrelu5_stage4_L1" | |
type: "ReLU" | |
bottom: "Mconv5_stage4_L1" | |
top: "Mconv5_stage4_L1" | |
} | |
layer { | |
name: "Mconv5_stage4_L2" | |
type: "Convolution" | |
bottom: "Mconv4_stage4_L2" | |
top: "Mconv5_stage4_L2" | |
param { | |
lr_mult: 4.0 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 8.0 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 128 | |
pad: 3 | |
kernel_size: 7 | |
weight_filler { | |
type: "gaussian" | |
std: 0.01 | |
} | |
bias_filler { | |
type: "constant" | |
} | |
} | |
} | |
layer { | |
name: "Mrelu5_stage4_L2" | |
type: "ReLU" | |
bottom: "Mconv5_stage4_L2" | |
top: "Mconv5_stage4_L2" | |
} | |
layer { | |
name: "Mconv6_stage4_L1" | |
type: "Convolution" | |
bottom: "Mconv5_stage4_L1" | |
top: "Mconv6_stage4_L1" | |
param { | |
lr_mult: 4.0 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 8.0 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 128 | |
pad: 0 | |
kernel_size: 1 | |
weight_filler { | |
type: "gaussian" | |
std: 0.01 | |
} | |
bias_filler { | |
type: "constant" | |
} | |
} | |
} | |
layer { | |
name: "Mrelu6_stage4_L1" | |
type: "ReLU" | |
bottom: "Mconv6_stage4_L1" | |
top: "Mconv6_stage4_L1" | |
} | |
layer { | |
name: "Mconv6_stage4_L2" | |
type: "Convolution" | |
bottom: "Mconv5_stage4_L2" | |
top: "Mconv6_stage4_L2" | |
param { | |
lr_mult: 4.0 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 8.0 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 128 | |
pad: 0 | |
kernel_size: 1 | |
weight_filler { | |
type: "gaussian" | |
std: 0.01 | |
} | |
bias_filler { | |
type: "constant" | |
} | |
} | |
} | |
layer { | |
name: "Mrelu6_stage4_L2" | |
type: "ReLU" | |
bottom: "Mconv6_stage4_L2" | |
top: "Mconv6_stage4_L2" | |
} | |
layer { | |
name: "Mconv7_stage4_L1" | |
type: "Convolution" | |
bottom: "Mconv6_stage4_L1" | |
top: "Mconv7_stage4_L1" | |
param { | |
lr_mult: 4.0 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 8.0 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 38 | |
pad: 0 | |
kernel_size: 1 | |
weight_filler { | |
type: "gaussian" | |
std: 0.01 | |
} | |
bias_filler { | |
type: "constant" | |
} | |
} | |
} | |
layer { | |
name: "Mconv7_stage4_L2" | |
type: "Convolution" | |
bottom: "Mconv6_stage4_L2" | |
top: "Mconv7_stage4_L2" | |
param { | |
lr_mult: 4.0 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 8.0 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 19 | |
pad: 0 | |
kernel_size: 1 | |
weight_filler { | |
type: "gaussian" | |
std: 0.01 | |
} | |
bias_filler { | |
type: "constant" | |
} | |
} | |
} | |
layer { | |
name: "concat_stage5" | |
type: "Concat" | |
bottom: "Mconv7_stage4_L1" | |
bottom: "Mconv7_stage4_L2" | |
bottom: "conv4_4_CPM" | |
top: "concat_stage5" | |
concat_param { | |
axis: 1 | |
} | |
} | |
layer { | |
name: "Mconv1_stage5_L1" | |
type: "Convolution" | |
bottom: "concat_stage5" | |
top: "Mconv1_stage5_L1" | |
param { | |
lr_mult: 4.0 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 8.0 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 128 | |
pad: 3 | |
kernel_size: 7 | |
weight_filler { | |
type: "gaussian" | |
std: 0.01 | |
} | |
bias_filler { | |
type: "constant" | |
} | |
} | |
} | |
layer { | |
name: "Mrelu1_stage5_L1" | |
type: "ReLU" | |
bottom: "Mconv1_stage5_L1" | |
top: "Mconv1_stage5_L1" | |
} | |
layer { | |
name: "Mconv1_stage5_L2" | |
type: "Convolution" | |
bottom: "concat_stage5" | |
top: "Mconv1_stage5_L2" | |
param { | |
lr_mult: 4.0 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 8.0 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 128 | |
pad: 3 | |
kernel_size: 7 | |
weight_filler { | |
type: "gaussian" | |
std: 0.01 | |
} | |
bias_filler { | |
type: "constant" | |
} | |
} | |
} | |
layer { | |
name: "Mrelu1_stage5_L2" | |
type: "ReLU" | |
bottom: "Mconv1_stage5_L2" | |
top: "Mconv1_stage5_L2" | |
} | |
layer { | |
name: "Mconv2_stage5_L1" | |
type: "Convolution" | |
bottom: "Mconv1_stage5_L1" | |
top: "Mconv2_stage5_L1" | |
param { | |
lr_mult: 4.0 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 8.0 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 128 | |
pad: 3 | |
kernel_size: 7 | |
weight_filler { | |
type: "gaussian" | |
std: 0.01 | |
} | |
bias_filler { | |
type: "constant" | |
} | |
} | |
} | |
layer { | |
name: "Mrelu2_stage5_L1" | |
type: "ReLU" | |
bottom: "Mconv2_stage5_L1" | |
top: "Mconv2_stage5_L1" | |
} | |
layer { | |
name: "Mconv2_stage5_L2" | |
type: "Convolution" | |
bottom: "Mconv1_stage5_L2" | |
top: "Mconv2_stage5_L2" | |
param { | |
lr_mult: 4.0 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 8.0 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 128 | |
pad: 3 | |
kernel_size: 7 | |
weight_filler { | |
type: "gaussian" | |
std: 0.01 | |
} | |
bias_filler { | |
type: "constant" | |
} | |
} | |
} | |
layer { | |
name: "Mrelu2_stage5_L2" | |
type: "ReLU" | |
bottom: "Mconv2_stage5_L2" | |
top: "Mconv2_stage5_L2" | |
} | |
layer { | |
name: "Mconv3_stage5_L1" | |
type: "Convolution" | |
bottom: "Mconv2_stage5_L1" | |
top: "Mconv3_stage5_L1" | |
param { | |
lr_mult: 4.0 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 8.0 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 128 | |
pad: 3 | |
kernel_size: 7 | |
weight_filler { | |
type: "gaussian" | |
std: 0.01 | |
} | |
bias_filler { | |
type: "constant" | |
} | |
} | |
} | |
layer { | |
name: "Mrelu3_stage5_L1" | |
type: "ReLU" | |
bottom: "Mconv3_stage5_L1" | |
top: "Mconv3_stage5_L1" | |
} | |
layer { | |
name: "Mconv3_stage5_L2" | |
type: "Convolution" | |
bottom: "Mconv2_stage5_L2" | |
top: "Mconv3_stage5_L2" | |
param { | |
lr_mult: 4.0 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 8.0 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 128 | |
pad: 3 | |
kernel_size: 7 | |
weight_filler { | |
type: "gaussian" | |
std: 0.01 | |
} | |
bias_filler { | |
type: "constant" | |
} | |
} | |
} | |
layer { | |
name: "Mrelu3_stage5_L2" | |
type: "ReLU" | |
bottom: "Mconv3_stage5_L2" | |
top: "Mconv3_stage5_L2" | |
} | |
layer { | |
name: "Mconv4_stage5_L1" | |
type: "Convolution" | |
bottom: "Mconv3_stage5_L1" | |
top: "Mconv4_stage5_L1" | |
param { | |
lr_mult: 4.0 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 8.0 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 128 | |
pad: 3 | |
kernel_size: 7 | |
weight_filler { | |
type: "gaussian" | |
std: 0.01 | |
} | |
bias_filler { | |
type: "constant" | |
} | |
} | |
} | |
layer { | |
name: "Mrelu4_stage5_L1" | |
type: "ReLU" | |
bottom: "Mconv4_stage5_L1" | |
top: "Mconv4_stage5_L1" | |
} | |
layer { | |
name: "Mconv4_stage5_L2" | |
type: "Convolution" | |
bottom: "Mconv3_stage5_L2" | |
top: "Mconv4_stage5_L2" | |
param { | |
lr_mult: 4.0 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 8.0 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 128 | |
pad: 3 | |
kernel_size: 7 | |
weight_filler { | |
type: "gaussian" | |
std: 0.01 | |
} | |
bias_filler { | |
type: "constant" | |
} | |
} | |
} | |
layer { | |
name: "Mrelu4_stage5_L2" | |
type: "ReLU" | |
bottom: "Mconv4_stage5_L2" | |
top: "Mconv4_stage5_L2" | |
} | |
layer { | |
name: "Mconv5_stage5_L1" | |
type: "Convolution" | |
bottom: "Mconv4_stage5_L1" | |
top: "Mconv5_stage5_L1" | |
param { | |
lr_mult: 4.0 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 8.0 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 128 | |
pad: 3 | |
kernel_size: 7 | |
weight_filler { | |
type: "gaussian" | |
std: 0.01 | |
} | |
bias_filler { | |
type: "constant" | |
} | |
} | |
} | |
layer { | |
name: "Mrelu5_stage5_L1" | |
type: "ReLU" | |
bottom: "Mconv5_stage5_L1" | |
top: "Mconv5_stage5_L1" | |
} | |
layer { | |
name: "Mconv5_stage5_L2" | |
type: "Convolution" | |
bottom: "Mconv4_stage5_L2" | |
top: "Mconv5_stage5_L2" | |
param { | |
lr_mult: 4.0 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 8.0 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 128 | |
pad: 3 | |
kernel_size: 7 | |
weight_filler { | |
type: "gaussian" | |
std: 0.01 | |
} | |
bias_filler { | |
type: "constant" | |
} | |
} | |
} | |
layer { | |
name: "Mrelu5_stage5_L2" | |
type: "ReLU" | |
bottom: "Mconv5_stage5_L2" | |
top: "Mconv5_stage5_L2" | |
} | |
layer { | |
name: "Mconv6_stage5_L1" | |
type: "Convolution" | |
bottom: "Mconv5_stage5_L1" | |
top: "Mconv6_stage5_L1" | |
param { | |
lr_mult: 4.0 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 8.0 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 128 | |
pad: 0 | |
kernel_size: 1 | |
weight_filler { | |
type: "gaussian" | |
std: 0.01 | |
} | |
bias_filler { | |
type: "constant" | |
} | |
} | |
} | |
layer { | |
name: "Mrelu6_stage5_L1" | |
type: "ReLU" | |
bottom: "Mconv6_stage5_L1" | |
top: "Mconv6_stage5_L1" | |
} | |
layer { | |
name: "Mconv6_stage5_L2" | |
type: "Convolution" | |
bottom: "Mconv5_stage5_L2" | |
top: "Mconv6_stage5_L2" | |
param { | |
lr_mult: 4.0 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 8.0 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 128 | |
pad: 0 | |
kernel_size: 1 | |
weight_filler { | |
type: "gaussian" | |
std: 0.01 | |
} | |
bias_filler { | |
type: "constant" | |
} | |
} | |
} | |
layer { | |
name: "Mrelu6_stage5_L2" | |
type: "ReLU" | |
bottom: "Mconv6_stage5_L2" | |
top: "Mconv6_stage5_L2" | |
} | |
layer { | |
name: "Mconv7_stage5_L1" | |
type: "Convolution" | |
bottom: "Mconv6_stage5_L1" | |
top: "Mconv7_stage5_L1" | |
param { | |
lr_mult: 4.0 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 8.0 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 38 | |
pad: 0 | |
kernel_size: 1 | |
weight_filler { | |
type: "gaussian" | |
std: 0.01 | |
} | |
bias_filler { | |
type: "constant" | |
} | |
} | |
} | |
layer { | |
name: "Mconv7_stage5_L2" | |
type: "Convolution" | |
bottom: "Mconv6_stage5_L2" | |
top: "Mconv7_stage5_L2" | |
param { | |
lr_mult: 4.0 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 8.0 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 19 | |
pad: 0 | |
kernel_size: 1 | |
weight_filler { | |
type: "gaussian" | |
std: 0.01 | |
} | |
bias_filler { | |
type: "constant" | |
} | |
} | |
} | |
layer { | |
name: "concat_stage6" | |
type: "Concat" | |
bottom: "Mconv7_stage5_L1" | |
bottom: "Mconv7_stage5_L2" | |
bottom: "conv4_4_CPM" | |
top: "concat_stage6" | |
concat_param { | |
axis: 1 | |
} | |
} | |
layer { | |
name: "Mconv1_stage6_L1" | |
type: "Convolution" | |
bottom: "concat_stage6" | |
top: "Mconv1_stage6_L1" | |
param { | |
lr_mult: 4.0 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 8.0 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 128 | |
pad: 3 | |
kernel_size: 7 | |
weight_filler { | |
type: "gaussian" | |
std: 0.01 | |
} | |
bias_filler { | |
type: "constant" | |
} | |
} | |
} | |
layer { | |
name: "Mrelu1_stage6_L1" | |
type: "ReLU" | |
bottom: "Mconv1_stage6_L1" | |
top: "Mconv1_stage6_L1" | |
} | |
layer { | |
name: "Mconv1_stage6_L2" | |
type: "Convolution" | |
bottom: "concat_stage6" | |
top: "Mconv1_stage6_L2" | |
param { | |
lr_mult: 4.0 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 8.0 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 128 | |
pad: 3 | |
kernel_size: 7 | |
weight_filler { | |
type: "gaussian" | |
std: 0.01 | |
} | |
bias_filler { | |
type: "constant" | |
} | |
} | |
} | |
layer { | |
name: "Mrelu1_stage6_L2" | |
type: "ReLU" | |
bottom: "Mconv1_stage6_L2" | |
top: "Mconv1_stage6_L2" | |
} | |
layer { | |
name: "Mconv2_stage6_L1" | |
type: "Convolution" | |
bottom: "Mconv1_stage6_L1" | |
top: "Mconv2_stage6_L1" | |
param { | |
lr_mult: 4.0 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 8.0 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 128 | |
pad: 3 | |
kernel_size: 7 | |
weight_filler { | |
type: "gaussian" | |
std: 0.01 | |
} | |
bias_filler { | |
type: "constant" | |
} | |
} | |
} | |
layer { | |
name: "Mrelu2_stage6_L1" | |
type: "ReLU" | |
bottom: "Mconv2_stage6_L1" | |
top: "Mconv2_stage6_L1" | |
} | |
layer { | |
name: "Mconv2_stage6_L2" | |
type: "Convolution" | |
bottom: "Mconv1_stage6_L2" | |
top: "Mconv2_stage6_L2" | |
param { | |
lr_mult: 4.0 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 8.0 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 128 | |
pad: 3 | |
kernel_size: 7 | |
weight_filler { | |
type: "gaussian" | |
std: 0.01 | |
} | |
bias_filler { | |
type: "constant" | |
} | |
} | |
} | |
layer { | |
name: "Mrelu2_stage6_L2" | |
type: "ReLU" | |
bottom: "Mconv2_stage6_L2" | |
top: "Mconv2_stage6_L2" | |
} | |
layer { | |
name: "Mconv3_stage6_L1" | |
type: "Convolution" | |
bottom: "Mconv2_stage6_L1" | |
top: "Mconv3_stage6_L1" | |
param { | |
lr_mult: 4.0 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 8.0 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 128 | |
pad: 3 | |
kernel_size: 7 | |
weight_filler { | |
type: "gaussian" | |
std: 0.01 | |
} | |
bias_filler { | |
type: "constant" | |
} | |
} | |
} | |
layer { | |
name: "Mrelu3_stage6_L1" | |
type: "ReLU" | |
bottom: "Mconv3_stage6_L1" | |
top: "Mconv3_stage6_L1" | |
} | |
layer { | |
name: "Mconv3_stage6_L2" | |
type: "Convolution" | |
bottom: "Mconv2_stage6_L2" | |
top: "Mconv3_stage6_L2" | |
param { | |
lr_mult: 4.0 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 8.0 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 128 | |
pad: 3 | |
kernel_size: 7 | |
weight_filler { | |
type: "gaussian" | |
std: 0.01 | |
} | |
bias_filler { | |
type: "constant" | |
} | |
} | |
} | |
layer { | |
name: "Mrelu3_stage6_L2" | |
type: "ReLU" | |
bottom: "Mconv3_stage6_L2" | |
top: "Mconv3_stage6_L2" | |
} | |
layer { | |
name: "Mconv4_stage6_L1" | |
type: "Convolution" | |
bottom: "Mconv3_stage6_L1" | |
top: "Mconv4_stage6_L1" | |
param { | |
lr_mult: 4.0 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 8.0 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 128 | |
pad: 3 | |
kernel_size: 7 | |
weight_filler { | |
type: "gaussian" | |
std: 0.01 | |
} | |
bias_filler { | |
type: "constant" | |
} | |
} | |
} | |
layer { | |
name: "Mrelu4_stage6_L1" | |
type: "ReLU" | |
bottom: "Mconv4_stage6_L1" | |
top: "Mconv4_stage6_L1" | |
} | |
layer { | |
name: "Mconv4_stage6_L2" | |
type: "Convolution" | |
bottom: "Mconv3_stage6_L2" | |
top: "Mconv4_stage6_L2" | |
param { | |
lr_mult: 4.0 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 8.0 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 128 | |
pad: 3 | |
kernel_size: 7 | |
weight_filler { | |
type: "gaussian" | |
std: 0.01 | |
} | |
bias_filler { | |
type: "constant" | |
} | |
} | |
} | |
layer { | |
name: "Mrelu4_stage6_L2" | |
type: "ReLU" | |
bottom: "Mconv4_stage6_L2" | |
top: "Mconv4_stage6_L2" | |
} | |
layer { | |
name: "Mconv5_stage6_L1" | |
type: "Convolution" | |
bottom: "Mconv4_stage6_L1" | |
top: "Mconv5_stage6_L1" | |
param { | |
lr_mult: 4.0 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 8.0 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 128 | |
pad: 3 | |
kernel_size: 7 | |
weight_filler { | |
type: "gaussian" | |
std: 0.01 | |
} | |
bias_filler { | |
type: "constant" | |
} | |
} | |
} | |
layer { | |
name: "Mrelu5_stage6_L1" | |
type: "ReLU" | |
bottom: "Mconv5_stage6_L1" | |
top: "Mconv5_stage6_L1" | |
} | |
layer { | |
name: "Mconv5_stage6_L2" | |
type: "Convolution" | |
bottom: "Mconv4_stage6_L2" | |
top: "Mconv5_stage6_L2" | |
param { | |
lr_mult: 4.0 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 8.0 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 128 | |
pad: 3 | |
kernel_size: 7 | |
weight_filler { | |
type: "gaussian" | |
std: 0.01 | |
} | |
bias_filler { | |
type: "constant" | |
} | |
} | |
} | |
layer { | |
name: "Mrelu5_stage6_L2" | |
type: "ReLU" | |
bottom: "Mconv5_stage6_L2" | |
top: "Mconv5_stage6_L2" | |
} | |
layer { | |
name: "Mconv6_stage6_L1" | |
type: "Convolution" | |
bottom: "Mconv5_stage6_L1" | |
top: "Mconv6_stage6_L1" | |
param { | |
lr_mult: 4.0 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 8.0 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 128 | |
pad: 0 | |
kernel_size: 1 | |
weight_filler { | |
type: "gaussian" | |
std: 0.01 | |
} | |
bias_filler { | |
type: "constant" | |
} | |
} | |
} | |
layer { | |
name: "Mrelu6_stage6_L1" | |
type: "ReLU" | |
bottom: "Mconv6_stage6_L1" | |
top: "Mconv6_stage6_L1" | |
} | |
layer { | |
name: "Mconv6_stage6_L2" | |
type: "Convolution" | |
bottom: "Mconv5_stage6_L2" | |
top: "Mconv6_stage6_L2" | |
param { | |
lr_mult: 4.0 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 8.0 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 128 | |
pad: 0 | |
kernel_size: 1 | |
weight_filler { | |
type: "gaussian" | |
std: 0.01 | |
} | |
bias_filler { | |
type: "constant" | |
} | |
} | |
} | |
layer { | |
name: "Mrelu6_stage6_L2" | |
type: "ReLU" | |
bottom: "Mconv6_stage6_L2" | |
top: "Mconv6_stage6_L2" | |
} | |
layer { | |
name: "Mconv7_stage6_L1" | |
type: "Convolution" | |
bottom: "Mconv6_stage6_L1" | |
top: "Mconv7_stage6_L1" | |
param { | |
lr_mult: 4.0 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 8.0 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 38 | |
pad: 0 | |
kernel_size: 1 | |
weight_filler { | |
type: "gaussian" | |
std: 0.01 | |
} | |
bias_filler { | |
type: "constant" | |
} | |
} | |
} | |
layer { | |
name: "Mconv7_stage6_L2" | |
type: "Convolution" | |
bottom: "Mconv6_stage6_L2" | |
top: "Mconv7_stage6_L2" | |
param { | |
lr_mult: 4.0 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 8.0 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 19 | |
pad: 0 | |
kernel_size: 1 | |
weight_filler { | |
type: "gaussian" | |
std: 0.01 | |
} | |
bias_filler { | |
type: "constant" | |
} | |
} | |
} |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
layer { | |
name: "data" | |
type: "CPMData" | |
top: "data" | |
top: "label" | |
data_param { | |
source: "/home/zhecao/COCO_kpt/lmdb_trainVal" | |
batch_size: 10 | |
backend: LMDB | |
} | |
cpm_transform_param { | |
stride: 8 | |
max_rotate_degree: 40 | |
visualize: false | |
crop_size_x: 368 | |
crop_size_y: 368 | |
scale_prob: 1 | |
scale_min: 0.5 | |
scale_max: 1.1 | |
target_dist: 0.6 | |
center_perterb_max: 40 | |
do_clahe: false | |
num_parts: 56 | |
np_in_lmdb: 17 | |
} | |
} | |
layer { | |
name: "vec_weight" | |
type: "Slice" | |
bottom: "label" | |
top: "vec_weight" | |
top: "heat_weight" | |
top: "vec_temp" | |
top: "heat_temp" | |
slice_param { | |
slice_point: 38 | |
slice_point: 57 | |
slice_point: 95 | |
axis: 1 | |
} | |
} | |
layer { | |
name: "label_vec" | |
type: "Eltwise" | |
bottom: "vec_weight" | |
bottom: "vec_temp" | |
top: "label_vec" | |
eltwise_param { | |
operation: PROD | |
} | |
} | |
layer { | |
name: "label_heat" | |
type: "Eltwise" | |
bottom: "heat_weight" | |
bottom: "heat_temp" | |
top: "label_heat" | |
eltwise_param { | |
operation: PROD | |
} | |
} | |
layer { | |
name: "image" | |
type: "Slice" | |
bottom: "data" | |
top: "image" | |
top: "center_map" | |
slice_param { | |
slice_point: 3 | |
axis: 1 | |
} | |
} | |
layer { | |
name: "silence2" | |
type: "Silence" | |
bottom: "center_map" | |
} | |
layer { | |
name: "conv1_1" | |
type: "Convolution" | |
bottom: "image" | |
top: "conv1_1" | |
param { | |
lr_mult: 1.0 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 2.0 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 64 | |
pad: 1 | |
kernel_size: 3 | |
weight_filler { | |
type: "gaussian" | |
std: 0.01 | |
} | |
bias_filler { | |
type: "constant" | |
} | |
} | |
} | |
layer { | |
name: "relu1_1" | |
type: "ReLU" | |
bottom: "conv1_1" | |
top: "conv1_1" | |
} | |
layer { | |
name: "conv1_2" | |
type: "Convolution" | |
bottom: "conv1_1" | |
top: "conv1_2" | |
param { | |
lr_mult: 1.0 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 2.0 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 64 | |
pad: 1 | |
kernel_size: 3 | |
weight_filler { | |
type: "gaussian" | |
std: 0.01 | |
} | |
bias_filler { | |
type: "constant" | |
} | |
} | |
} | |
layer { | |
name: "relu1_2" | |
type: "ReLU" | |
bottom: "conv1_2" | |
top: "conv1_2" | |
} | |
layer { | |
name: "pool1_stage1" | |
type: "Pooling" | |
bottom: "conv1_2" | |
top: "pool1_stage1" | |
pooling_param { | |
pool: MAX | |
kernel_size: 2 | |
stride: 2 | |
} | |
} | |
layer { | |
name: "conv2_1" | |
type: "Convolution" | |
bottom: "pool1_stage1" | |
top: "conv2_1" | |
param { | |
lr_mult: 1.0 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 2.0 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 128 | |
pad: 1 | |
kernel_size: 3 | |
weight_filler { | |
type: "gaussian" | |
std: 0.01 | |
} | |
bias_filler { | |
type: "constant" | |
} | |
} | |
} | |
layer { | |
name: "relu2_1" | |
type: "ReLU" | |
bottom: "conv2_1" | |
top: "conv2_1" | |
} | |
layer { | |
name: "conv2_2" | |
type: "Convolution" | |
bottom: "conv2_1" | |
top: "conv2_2" | |
param { | |
lr_mult: 1.0 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 2.0 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 128 | |
pad: 1 | |
kernel_size: 3 | |
weight_filler { | |
type: "gaussian" | |
std: 0.01 | |
} | |
bias_filler { | |
type: "constant" | |
} | |
} | |
} | |
layer { | |
name: "relu2_2" | |
type: "ReLU" | |
bottom: "conv2_2" | |
top: "conv2_2" | |
} | |
layer { | |
name: "pool2_stage1" | |
type: "Pooling" | |
bottom: "conv2_2" | |
top: "pool2_stage1" | |
pooling_param { | |
pool: MAX | |
kernel_size: 2 | |
stride: 2 | |
} | |
} | |
layer { | |
name: "conv3_1" | |
type: "Convolution" | |
bottom: "pool2_stage1" | |
top: "conv3_1" | |
param { | |
lr_mult: 1.0 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 2.0 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 256 | |
pad: 1 | |
kernel_size: 3 | |
weight_filler { | |
type: "gaussian" | |
std: 0.01 | |
} | |
bias_filler { | |
type: "constant" | |
} | |
} | |
} | |
layer { | |
name: "relu3_1" | |
type: "ReLU" | |
bottom: "conv3_1" | |
top: "conv3_1" | |
} | |
layer { | |
name: "conv3_2" | |
type: "Convolution" | |
bottom: "conv3_1" | |
top: "conv3_2" | |
param { | |
lr_mult: 1.0 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 2.0 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 256 | |
pad: 1 | |
kernel_size: 3 | |
weight_filler { | |
type: "gaussian" | |
std: 0.01 | |
} | |
bias_filler { | |
type: "constant" | |
} | |
} | |
} | |
layer { | |
name: "relu3_2" | |
type: "ReLU" | |
bottom: "conv3_2" | |
top: "conv3_2" | |
} | |
layer { | |
name: "conv3_3" | |
type: "Convolution" | |
bottom: "conv3_2" | |
top: "conv3_3" | |
param { | |
lr_mult: 1.0 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 2.0 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 256 | |
pad: 1 | |
kernel_size: 3 | |
weight_filler { | |
type: "gaussian" | |
std: 0.01 | |
} | |
bias_filler { | |
type: "constant" | |
} | |
} | |
} | |
layer { | |
name: "relu3_3" | |
type: "ReLU" | |
bottom: "conv3_3" | |
top: "conv3_3" | |
} | |
layer { | |
name: "conv3_4" | |
type: "Convolution" | |
bottom: "conv3_3" | |
top: "conv3_4" | |
param { | |
lr_mult: 1.0 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 2.0 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 256 | |
pad: 1 | |
kernel_size: 3 | |
weight_filler { | |
type: "gaussian" | |
std: 0.01 | |
} | |
bias_filler { | |
type: "constant" | |
} | |
} | |
} | |
layer { | |
name: "relu3_4" | |
type: "ReLU" | |
bottom: "conv3_4" | |
top: "conv3_4" | |
} | |
layer { | |
name: "pool3_stage1" | |
type: "Pooling" | |
bottom: "conv3_4" | |
top: "pool3_stage1" | |
pooling_param { | |
pool: MAX | |
kernel_size: 2 | |
stride: 2 | |
} | |
} | |
layer { | |
name: "conv4_1" | |
type: "Convolution" | |
bottom: "pool3_stage1" | |
top: "conv4_1" | |
param { | |
lr_mult: 1.0 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 2.0 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 512 | |
pad: 1 | |
kernel_size: 3 | |
weight_filler { | |
type: "gaussian" | |
std: 0.01 | |
} | |
bias_filler { | |
type: "constant" | |
} | |
} | |
} | |
layer { | |
name: "relu4_1" | |
type: "ReLU" | |
bottom: "conv4_1" | |
top: "conv4_1" | |
} | |
layer { | |
name: "conv4_2" | |
type: "Convolution" | |
bottom: "conv4_1" | |
top: "conv4_2" | |
param { | |
lr_mult: 1.0 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 2.0 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 512 | |
pad: 1 | |
kernel_size: 3 | |
weight_filler { | |
type: "gaussian" | |
std: 0.01 | |
} | |
bias_filler { | |
type: "constant" | |
} | |
} | |
} | |
layer { | |
name: "relu4_2" | |
type: "ReLU" | |
bottom: "conv4_2" | |
top: "conv4_2" | |
} | |
layer { | |
name: "conv4_3_CPM" | |
type: "Convolution" | |
bottom: "conv4_2" | |
top: "conv4_3_CPM" | |
param { | |
lr_mult: 1.0 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 2.0 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 256 | |
pad: 1 | |
kernel_size: 3 | |
weight_filler { | |
type: "gaussian" | |
std: 0.01 | |
} | |
bias_filler { | |
type: "constant" | |
} | |
} | |
} | |
layer { | |
name: "relu4_3_CPM" | |
type: "ReLU" | |
bottom: "conv4_3_CPM" | |
top: "conv4_3_CPM" | |
} | |
layer { | |
name: "conv4_4_CPM" | |
type: "Convolution" | |
bottom: "conv4_3_CPM" | |
top: "conv4_4_CPM" | |
param { | |
lr_mult: 1.0 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 2.0 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 128 | |
pad: 1 | |
kernel_size: 3 | |
weight_filler { | |
type: "gaussian" | |
std: 0.01 | |
} | |
bias_filler { | |
type: "constant" | |
} | |
} | |
} | |
layer { | |
name: "relu4_4_CPM" | |
type: "ReLU" | |
bottom: "conv4_4_CPM" | |
top: "conv4_4_CPM" | |
} | |
layer { | |
name: "conv5_1_CPM_L1" | |
type: "Convolution" | |
bottom: "conv4_4_CPM" | |
top: "conv5_1_CPM_L1" | |
param { | |
lr_mult: 1.0 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 2.0 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 128 | |
pad: 1 | |
kernel_size: 3 | |
weight_filler { | |
type: "gaussian" | |
std: 0.01 | |
} | |
bias_filler { | |
type: "constant" | |
} | |
} | |
} | |
layer { | |
name: "relu5_1_CPM_L1" | |
type: "ReLU" | |
bottom: "conv5_1_CPM_L1" | |
top: "conv5_1_CPM_L1" | |
} | |
layer { | |
name: "conv5_1_CPM_L2" | |
type: "Convolution" | |
bottom: "conv4_4_CPM" | |
top: "conv5_1_CPM_L2" | |
param { | |
lr_mult: 1.0 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 2.0 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 128 | |
pad: 1 | |
kernel_size: 3 | |
weight_filler { | |
type: "gaussian" | |
std: 0.01 | |
} | |
bias_filler { | |
type: "constant" | |
} | |
} | |
} | |
layer { | |
name: "relu5_1_CPM_L2" | |
type: "ReLU" | |
bottom: "conv5_1_CPM_L2" | |
top: "conv5_1_CPM_L2" | |
} | |
layer { | |
name: "conv5_2_CPM_L1" | |
type: "Convolution" | |
bottom: "conv5_1_CPM_L1" | |
top: "conv5_2_CPM_L1" | |
param { | |
lr_mult: 1.0 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 2.0 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 128 | |
pad: 1 | |
kernel_size: 3 | |
weight_filler { | |
type: "gaussian" | |
std: 0.01 | |
} | |
bias_filler { | |
type: "constant" | |
} | |
} | |
} | |
layer { | |
name: "relu5_2_CPM_L1" | |
type: "ReLU" | |
bottom: "conv5_2_CPM_L1" | |
top: "conv5_2_CPM_L1" | |
} | |
layer { | |
name: "conv5_2_CPM_L2" | |
type: "Convolution" | |
bottom: "conv5_1_CPM_L2" | |
top: "conv5_2_CPM_L2" | |
param { | |
lr_mult: 1.0 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 2.0 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 128 | |
pad: 1 | |
kernel_size: 3 | |
weight_filler { | |
type: "gaussian" | |
std: 0.01 | |
} | |
bias_filler { | |
type: "constant" | |
} | |
} | |
} | |
layer { | |
name: "relu5_2_CPM_L2" | |
type: "ReLU" | |
bottom: "conv5_2_CPM_L2" | |
top: "conv5_2_CPM_L2" | |
} | |
layer { | |
name: "conv5_3_CPM_L1" | |
type: "Convolution" | |
bottom: "conv5_2_CPM_L1" | |
top: "conv5_3_CPM_L1" | |
param { | |
lr_mult: 1.0 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 2.0 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 128 | |
pad: 1 | |
kernel_size: 3 | |
weight_filler { | |
type: "gaussian" | |
std: 0.01 | |
} | |
bias_filler { | |
type: "constant" | |
} | |
} | |
} | |
layer { | |
name: "relu5_3_CPM_L1" | |
type: "ReLU" | |
bottom: "conv5_3_CPM_L1" | |
top: "conv5_3_CPM_L1" | |
} | |
layer { | |
name: "conv5_3_CPM_L2" | |
type: "Convolution" | |
bottom: "conv5_2_CPM_L2" | |
top: "conv5_3_CPM_L2" | |
param { | |
lr_mult: 1.0 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 2.0 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 128 | |
pad: 1 | |
kernel_size: 3 | |
weight_filler { | |
type: "gaussian" | |
std: 0.01 | |
} | |
bias_filler { | |
type: "constant" | |
} | |
} | |
} | |
layer { | |
name: "relu5_3_CPM_L2" | |
type: "ReLU" | |
bottom: "conv5_3_CPM_L2" | |
top: "conv5_3_CPM_L2" | |
} | |
layer { | |
name: "conv5_4_CPM_L1" | |
type: "Convolution" | |
bottom: "conv5_3_CPM_L1" | |
top: "conv5_4_CPM_L1" | |
param { | |
lr_mult: 1.0 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 2.0 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 512 | |
pad: 0 | |
kernel_size: 1 | |
weight_filler { | |
type: "gaussian" | |
std: 0.01 | |
} | |
bias_filler { | |
type: "constant" | |
} | |
} | |
} | |
layer { | |
name: "relu5_4_CPM_L1" | |
type: "ReLU" | |
bottom: "conv5_4_CPM_L1" | |
top: "conv5_4_CPM_L1" | |
} | |
layer { | |
name: "conv5_4_CPM_L2" | |
type: "Convolution" | |
bottom: "conv5_3_CPM_L2" | |
top: "conv5_4_CPM_L2" | |
param { | |
lr_mult: 1.0 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 2.0 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 512 | |
pad: 0 | |
kernel_size: 1 | |
weight_filler { | |
type: "gaussian" | |
std: 0.01 | |
} | |
bias_filler { | |
type: "constant" | |
} | |
} | |
} | |
layer { | |
name: "relu5_4_CPM_L2" | |
type: "ReLU" | |
bottom: "conv5_4_CPM_L2" | |
top: "conv5_4_CPM_L2" | |
} | |
layer { | |
name: "conv5_5_CPM_L1" | |
type: "Convolution" | |
bottom: "conv5_4_CPM_L1" | |
top: "conv5_5_CPM_L1" | |
param { | |
lr_mult: 1.0 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 2.0 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 38 | |
pad: 0 | |
kernel_size: 1 | |
weight_filler { | |
type: "gaussian" | |
std: 0.01 | |
} | |
bias_filler { | |
type: "constant" | |
} | |
} | |
} | |
layer { | |
name: "conv5_5_CPM_L2" | |
type: "Convolution" | |
bottom: "conv5_4_CPM_L2" | |
top: "conv5_5_CPM_L2" | |
param { | |
lr_mult: 1.0 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 2.0 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 19 | |
pad: 0 | |
kernel_size: 1 | |
weight_filler { | |
type: "gaussian" | |
std: 0.01 | |
} | |
bias_filler { | |
type: "constant" | |
} | |
} | |
} | |
layer { | |
name: "weight_stage1_L1" | |
type: "Eltwise" | |
bottom: "conv5_5_CPM_L1" | |
bottom: "vec_weight" | |
top: "weight_stage1_L1" | |
eltwise_param { | |
operation: PROD | |
} | |
} | |
layer { | |
name: "loss_stage1_L1" | |
type: "EuclideanLoss" | |
bottom: "weight_stage1_L1" | |
bottom: "label_vec" | |
top: "loss_stage1_L1" | |
loss_weight: 1 | |
} | |
layer { | |
name: "weight_stage1_L2" | |
type: "Eltwise" | |
bottom: "conv5_5_CPM_L2" | |
bottom: "heat_weight" | |
top: "weight_stage1_L2" | |
eltwise_param { | |
operation: PROD | |
} | |
} | |
layer { | |
name: "loss_stage1_L2" | |
type: "EuclideanLoss" | |
bottom: "weight_stage1_L2" | |
bottom: "label_heat" | |
top: "loss_stage1_L2" | |
loss_weight: 1 | |
} | |
layer { | |
name: "concat_stage2" | |
type: "Concat" | |
bottom: "conv5_5_CPM_L1" | |
bottom: "conv5_5_CPM_L2" | |
bottom: "conv4_4_CPM" | |
top: "concat_stage2" | |
concat_param { | |
axis: 1 | |
} | |
} | |
layer { | |
name: "Mconv1_stage2_L1" | |
type: "Convolution" | |
bottom: "concat_stage2" | |
top: "Mconv1_stage2_L1" | |
param { | |
lr_mult: 4.0 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 8.0 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 128 | |
pad: 3 | |
kernel_size: 7 | |
weight_filler { | |
type: "gaussian" | |
std: 0.01 | |
} | |
bias_filler { | |
type: "constant" | |
} | |
} | |
} | |
layer { | |
name: "Mrelu1_stage2_L1" | |
type: "ReLU" | |
bottom: "Mconv1_stage2_L1" | |
top: "Mconv1_stage2_L1" | |
} | |
layer { | |
name: "Mconv1_stage2_L2" | |
type: "Convolution" | |
bottom: "concat_stage2" | |
top: "Mconv1_stage2_L2" | |
param { | |
lr_mult: 4.0 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 8.0 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 128 | |
pad: 3 | |
kernel_size: 7 | |
weight_filler { | |
type: "gaussian" | |
std: 0.01 | |
} | |
bias_filler { | |
type: "constant" | |
} | |
} | |
} | |
layer { | |
name: "Mrelu1_stage2_L2" | |
type: "ReLU" | |
bottom: "Mconv1_stage2_L2" | |
top: "Mconv1_stage2_L2" | |
} | |
layer { | |
name: "Mconv2_stage2_L1" | |
type: "Convolution" | |
bottom: "Mconv1_stage2_L1" | |
top: "Mconv2_stage2_L1" | |
param { | |
lr_mult: 4.0 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 8.0 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 128 | |
pad: 3 | |
kernel_size: 7 | |
weight_filler { | |
type: "gaussian" | |
std: 0.01 | |
} | |
bias_filler { | |
type: "constant" | |
} | |
} | |
} | |
layer { | |
name: "Mrelu2_stage2_L1" | |
type: "ReLU" | |
bottom: "Mconv2_stage2_L1" | |
top: "Mconv2_stage2_L1" | |
} | |
layer { | |
name: "Mconv2_stage2_L2" | |
type: "Convolution" | |
bottom: "Mconv1_stage2_L2" | |
top: "Mconv2_stage2_L2" | |
param { | |
lr_mult: 4.0 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 8.0 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 128 | |
pad: 3 | |
kernel_size: 7 | |
weight_filler { | |
type: "gaussian" | |
std: 0.01 | |
} | |
bias_filler { | |
type: "constant" | |
} | |
} | |
} | |
layer { | |
name: "Mrelu2_stage2_L2" | |
type: "ReLU" | |
bottom: "Mconv2_stage2_L2" | |
top: "Mconv2_stage2_L2" | |
} | |
layer { | |
name: "Mconv3_stage2_L1" | |
type: "Convolution" | |
bottom: "Mconv2_stage2_L1" | |
top: "Mconv3_stage2_L1" | |
param { | |
lr_mult: 4.0 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 8.0 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 128 | |
pad: 3 | |
kernel_size: 7 | |
weight_filler { | |
type: "gaussian" | |
std: 0.01 | |
} | |
bias_filler { | |
type: "constant" | |
} | |
} | |
} | |
layer { | |
name: "Mrelu3_stage2_L1" | |
type: "ReLU" | |
bottom: "Mconv3_stage2_L1" | |
top: "Mconv3_stage2_L1" | |
} | |
layer { | |
name: "Mconv3_stage2_L2" | |
type: "Convolution" | |
bottom: "Mconv2_stage2_L2" | |
top: "Mconv3_stage2_L2" | |
param { | |
lr_mult: 4.0 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 8.0 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 128 | |
pad: 3 | |
kernel_size: 7 | |
weight_filler { | |
type: "gaussian" | |
std: 0.01 | |
} | |
bias_filler { | |
type: "constant" | |
} | |
} | |
} | |
layer { | |
name: "Mrelu3_stage2_L2" | |
type: "ReLU" | |
bottom: "Mconv3_stage2_L2" | |
top: "Mconv3_stage2_L2" | |
} | |
layer { | |
name: "Mconv4_stage2_L1" | |
type: "Convolution" | |
bottom: "Mconv3_stage2_L1" | |
top: "Mconv4_stage2_L1" | |
param { | |
lr_mult: 4.0 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 8.0 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 128 | |
pad: 3 | |
kernel_size: 7 | |
weight_filler { | |
type: "gaussian" | |
std: 0.01 | |
} | |
bias_filler { | |
type: "constant" | |
} | |
} | |
} | |
layer { | |
name: "Mrelu4_stage2_L1" | |
type: "ReLU" | |
bottom: "Mconv4_stage2_L1" | |
top: "Mconv4_stage2_L1" | |
} | |
layer { | |
name: "Mconv4_stage2_L2" | |
type: "Convolution" | |
bottom: "Mconv3_stage2_L2" | |
top: "Mconv4_stage2_L2" | |
param { | |
lr_mult: 4.0 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 8.0 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 128 | |
pad: 3 | |
kernel_size: 7 | |
weight_filler { | |
type: "gaussian" | |
std: 0.01 | |
} | |
bias_filler { | |
type: "constant" | |
} | |
} | |
} | |
layer { | |
name: "Mrelu4_stage2_L2" | |
type: "ReLU" | |
bottom: "Mconv4_stage2_L2" | |
top: "Mconv4_stage2_L2" | |
} | |
layer { | |
name: "Mconv5_stage2_L1" | |
type: "Convolution" | |
bottom: "Mconv4_stage2_L1" | |
top: "Mconv5_stage2_L1" | |
param { | |
lr_mult: 4.0 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 8.0 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 128 | |
pad: 3 | |
kernel_size: 7 | |
weight_filler { | |
type: "gaussian" | |
std: 0.01 | |
} | |
bias_filler { | |
type: "constant" | |
} | |
} | |
} | |
layer { | |
name: "Mrelu5_stage2_L1" | |
type: "ReLU" | |
bottom: "Mconv5_stage2_L1" | |
top: "Mconv5_stage2_L1" | |
} | |
layer { | |
name: "Mconv5_stage2_L2" | |
type: "Convolution" | |
bottom: "Mconv4_stage2_L2" | |
top: "Mconv5_stage2_L2" | |
param { | |
lr_mult: 4.0 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 8.0 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 128 | |
pad: 3 | |
kernel_size: 7 | |
weight_filler { | |
type: "gaussian" | |
std: 0.01 | |
} | |
bias_filler { | |
type: "constant" | |
} | |
} | |
} | |
layer { | |
name: "Mrelu5_stage2_L2" | |
type: "ReLU" | |
bottom: "Mconv5_stage2_L2" | |
top: "Mconv5_stage2_L2" | |
} | |
layer { | |
name: "Mconv6_stage2_L1" | |
type: "Convolution" | |
bottom: "Mconv5_stage2_L1" | |
top: "Mconv6_stage2_L1" | |
param { | |
lr_mult: 4.0 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 8.0 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 128 | |
pad: 0 | |
kernel_size: 1 | |
weight_filler { | |
type: "gaussian" | |
std: 0.01 | |
} | |
bias_filler { | |
type: "constant" | |
} | |
} | |
} | |
layer { | |
name: "Mrelu6_stage2_L1" | |
type: "ReLU" | |
bottom: "Mconv6_stage2_L1" | |
top: "Mconv6_stage2_L1" | |
} | |
layer { | |
name: "Mconv6_stage2_L2" | |
type: "Convolution" | |
bottom: "Mconv5_stage2_L2" | |
top: "Mconv6_stage2_L2" | |
param { | |
lr_mult: 4.0 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 8.0 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 128 | |
pad: 0 | |
kernel_size: 1 | |
weight_filler { | |
type: "gaussian" | |
std: 0.01 | |
} | |
bias_filler { | |
type: "constant" | |
} | |
} | |
} | |
layer { | |
name: "Mrelu6_stage2_L2" | |
type: "ReLU" | |
bottom: "Mconv6_stage2_L2" | |
top: "Mconv6_stage2_L2" | |
} | |
layer { | |
name: "Mconv7_stage2_L1" | |
type: "Convolution" | |
bottom: "Mconv6_stage2_L1" | |
top: "Mconv7_stage2_L1" | |
param { | |
lr_mult: 4.0 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 8.0 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 38 | |
pad: 0 | |
kernel_size: 1 | |
weight_filler { | |
type: "gaussian" | |
std: 0.01 | |
} | |
bias_filler { | |
type: "constant" | |
} | |
} | |
} | |
layer { | |
name: "Mconv7_stage2_L2" | |
type: "Convolution" | |
bottom: "Mconv6_stage2_L2" | |
top: "Mconv7_stage2_L2" | |
param { | |
lr_mult: 4.0 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 8.0 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 19 | |
pad: 0 | |
kernel_size: 1 | |
weight_filler { | |
type: "gaussian" | |
std: 0.01 | |
} | |
bias_filler { | |
type: "constant" | |
} | |
} | |
} | |
layer { | |
name: "weight_stage2_L1" | |
type: "Eltwise" | |
bottom: "Mconv7_stage2_L1" | |
bottom: "vec_weight" | |
top: "weight_stage2_L1" | |
eltwise_param { | |
operation: PROD | |
} | |
} | |
layer { | |
name: "loss_stage2_L1" | |
type: "EuclideanLoss" | |
bottom: "weight_stage2_L1" | |
bottom: "label_vec" | |
top: "loss_stage2_L1" | |
loss_weight: 1 | |
} | |
layer { | |
name: "weight_stage2_L2" | |
type: "Eltwise" | |
bottom: "Mconv7_stage2_L2" | |
bottom: "heat_weight" | |
top: "weight_stage2_L2" | |
eltwise_param { | |
operation: PROD | |
} | |
} | |
layer { | |
name: "loss_stage2_L2" | |
type: "EuclideanLoss" | |
bottom: "weight_stage2_L2" | |
bottom: "label_heat" | |
top: "loss_stage2_L2" | |
loss_weight: 1 | |
} | |
layer { | |
name: "concat_stage3" | |
type: "Concat" | |
bottom: "Mconv7_stage2_L1" | |
bottom: "Mconv7_stage2_L2" | |
bottom: "conv4_4_CPM" | |
top: "concat_stage3" | |
concat_param { | |
axis: 1 | |
} | |
} | |
layer { | |
name: "Mconv1_stage3_L1" | |
type: "Convolution" | |
bottom: "concat_stage3" | |
top: "Mconv1_stage3_L1" | |
param { | |
lr_mult: 4.0 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 8.0 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 128 | |
pad: 3 | |
kernel_size: 7 | |
weight_filler { | |
type: "gaussian" | |
std: 0.01 | |
} | |
bias_filler { | |
type: "constant" | |
} | |
} | |
} | |
layer { | |
name: "Mrelu1_stage3_L1" | |
type: "ReLU" | |
bottom: "Mconv1_stage3_L1" | |
top: "Mconv1_stage3_L1" | |
} | |
layer { | |
name: "Mconv1_stage3_L2" | |
type: "Convolution" | |
bottom: "concat_stage3" | |
top: "Mconv1_stage3_L2" | |
param { | |
lr_mult: 4.0 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 8.0 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 128 | |
pad: 3 | |
kernel_size: 7 | |
weight_filler { | |
type: "gaussian" | |
std: 0.01 | |
} | |
bias_filler { | |
type: "constant" | |
} | |
} | |
} | |
layer { | |
name: "Mrelu1_stage3_L2" | |
type: "ReLU" | |
bottom: "Mconv1_stage3_L2" | |
top: "Mconv1_stage3_L2" | |
} | |
layer { | |
name: "Mconv2_stage3_L1" | |
type: "Convolution" | |
bottom: "Mconv1_stage3_L1" | |
top: "Mconv2_stage3_L1" | |
param { | |
lr_mult: 4.0 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 8.0 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 128 | |
pad: 3 | |
kernel_size: 7 | |
weight_filler { | |
type: "gaussian" | |
std: 0.01 | |
} | |
bias_filler { | |
type: "constant" | |
} | |
} | |
} | |
layer { | |
name: "Mrelu2_stage3_L1" | |
type: "ReLU" | |
bottom: "Mconv2_stage3_L1" | |
top: "Mconv2_stage3_L1" | |
} | |
layer { | |
name: "Mconv2_stage3_L2" | |
type: "Convolution" | |
bottom: "Mconv1_stage3_L2" | |
top: "Mconv2_stage3_L2" | |
param { | |
lr_mult: 4.0 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 8.0 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 128 | |
pad: 3 | |
kernel_size: 7 | |
weight_filler { | |
type: "gaussian" | |
std: 0.01 | |
} | |
bias_filler { | |
type: "constant" | |
} | |
} | |
} | |
layer { | |
name: "Mrelu2_stage3_L2" | |
type: "ReLU" | |
bottom: "Mconv2_stage3_L2" | |
top: "Mconv2_stage3_L2" | |
} | |
layer { | |
name: "Mconv3_stage3_L1" | |
type: "Convolution" | |
bottom: "Mconv2_stage3_L1" | |
top: "Mconv3_stage3_L1" | |
param { | |
lr_mult: 4.0 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 8.0 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 128 | |
pad: 3 | |
kernel_size: 7 | |
weight_filler { | |
type: "gaussian" | |
std: 0.01 | |
} | |
bias_filler { | |
type: "constant" | |
} | |
} | |
} | |
layer { | |
name: "Mrelu3_stage3_L1" | |
type: "ReLU" | |
bottom: "Mconv3_stage3_L1" | |
top: "Mconv3_stage3_L1" | |
} | |
layer { | |
name: "Mconv3_stage3_L2" | |
type: "Convolution" | |
bottom: "Mconv2_stage3_L2" | |
top: "Mconv3_stage3_L2" | |
param { | |
lr_mult: 4.0 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 8.0 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 128 | |
pad: 3 | |
kernel_size: 7 | |
weight_filler { | |
type: "gaussian" | |
std: 0.01 | |
} | |
bias_filler { | |
type: "constant" | |
} | |
} | |
} | |
layer { | |
name: "Mrelu3_stage3_L2" | |
type: "ReLU" | |
bottom: "Mconv3_stage3_L2" | |
top: "Mconv3_stage3_L2" | |
} | |
layer { | |
name: "Mconv4_stage3_L1" | |
type: "Convolution" | |
bottom: "Mconv3_stage3_L1" | |
top: "Mconv4_stage3_L1" | |
param { | |
lr_mult: 4.0 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 8.0 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 128 | |
pad: 3 | |
kernel_size: 7 | |
weight_filler { | |
type: "gaussian" | |
std: 0.01 | |
} | |
bias_filler { | |
type: "constant" | |
} | |
} | |
} | |
layer { | |
name: "Mrelu4_stage3_L1" | |
type: "ReLU" | |
bottom: "Mconv4_stage3_L1" | |
top: "Mconv4_stage3_L1" | |
} | |
layer { | |
name: "Mconv4_stage3_L2" | |
type: "Convolution" | |
bottom: "Mconv3_stage3_L2" | |
top: "Mconv4_stage3_L2" | |
param { | |
lr_mult: 4.0 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 8.0 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 128 | |
pad: 3 | |
kernel_size: 7 | |
weight_filler { | |
type: "gaussian" | |
std: 0.01 | |
} | |
bias_filler { | |
type: "constant" | |
} | |
} | |
} | |
layer { | |
name: "Mrelu4_stage3_L2" | |
type: "ReLU" | |
bottom: "Mconv4_stage3_L2" | |
top: "Mconv4_stage3_L2" | |
} | |
layer { | |
name: "Mconv5_stage3_L1" | |
type: "Convolution" | |
bottom: "Mconv4_stage3_L1" | |
top: "Mconv5_stage3_L1" | |
param { | |
lr_mult: 4.0 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 8.0 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 128 | |
pad: 3 | |
kernel_size: 7 | |
weight_filler { | |
type: "gaussian" | |
std: 0.01 | |
} | |
bias_filler { | |
type: "constant" | |
} | |
} | |
} | |
layer { | |
name: "Mrelu5_stage3_L1" | |
type: "ReLU" | |
bottom: "Mconv5_stage3_L1" | |
top: "Mconv5_stage3_L1" | |
} | |
layer { | |
name: "Mconv5_stage3_L2" | |
type: "Convolution" | |
bottom: "Mconv4_stage3_L2" | |
top: "Mconv5_stage3_L2" | |
param { | |
lr_mult: 4.0 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 8.0 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 128 | |
pad: 3 | |
kernel_size: 7 | |
weight_filler { | |
type: "gaussian" | |
std: 0.01 | |
} | |
bias_filler { | |
type: "constant" | |
} | |
} | |
} | |
layer { | |
name: "Mrelu5_stage3_L2" | |
type: "ReLU" | |
bottom: "Mconv5_stage3_L2" | |
top: "Mconv5_stage3_L2" | |
} | |
layer { | |
name: "Mconv6_stage3_L1" | |
type: "Convolution" | |
bottom: "Mconv5_stage3_L1" | |
top: "Mconv6_stage3_L1" | |
param { | |
lr_mult: 4.0 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 8.0 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 128 | |
pad: 0 | |
kernel_size: 1 | |
weight_filler { | |
type: "gaussian" | |
std: 0.01 | |
} | |
bias_filler { | |
type: "constant" | |
} | |
} | |
} | |
layer { | |
name: "Mrelu6_stage3_L1" | |
type: "ReLU" | |
bottom: "Mconv6_stage3_L1" | |
top: "Mconv6_stage3_L1" | |
} | |
layer { | |
name: "Mconv6_stage3_L2" | |
type: "Convolution" | |
bottom: "Mconv5_stage3_L2" | |
top: "Mconv6_stage3_L2" | |
param { | |
lr_mult: 4.0 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 8.0 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 128 | |
pad: 0 | |
kernel_size: 1 | |
weight_filler { | |
type: "gaussian" | |
std: 0.01 | |
} | |
bias_filler { | |
type: "constant" | |
} | |
} | |
} | |
layer { | |
name: "Mrelu6_stage3_L2" | |
type: "ReLU" | |
bottom: "Mconv6_stage3_L2" | |
top: "Mconv6_stage3_L2" | |
} | |
layer { | |
name: "Mconv7_stage3_L1" | |
type: "Convolution" | |
bottom: "Mconv6_stage3_L1" | |
top: "Mconv7_stage3_L1" | |
param { | |
lr_mult: 4.0 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 8.0 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 38 | |
pad: 0 | |
kernel_size: 1 | |
weight_filler { | |
type: "gaussian" | |
std: 0.01 | |
} | |
bias_filler { | |
type: "constant" | |
} | |
} | |
} | |
layer { | |
name: "Mconv7_stage3_L2" | |
type: "Convolution" | |
bottom: "Mconv6_stage3_L2" | |
top: "Mconv7_stage3_L2" | |
param { | |
lr_mult: 4.0 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 8.0 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 19 | |
pad: 0 | |
kernel_size: 1 | |
weight_filler { | |
type: "gaussian" | |
std: 0.01 | |
} | |
bias_filler { | |
type: "constant" | |
} | |
} | |
} | |
layer { | |
name: "weight_stage3_L1" | |
type: "Eltwise" | |
bottom: "Mconv7_stage3_L1" | |
bottom: "vec_weight" | |
top: "weight_stage3_L1" | |
eltwise_param { | |
operation: PROD | |
} | |
} | |
layer { | |
name: "loss_stage3_L1" | |
type: "EuclideanLoss" | |
bottom: "weight_stage3_L1" | |
bottom: "label_vec" | |
top: "loss_stage3_L1" | |
loss_weight: 1 | |
} | |
layer { | |
name: "weight_stage3_L2" | |
type: "Eltwise" | |
bottom: "Mconv7_stage3_L2" | |
bottom: "heat_weight" | |
top: "weight_stage3_L2" | |
eltwise_param { | |
operation: PROD | |
} | |
} | |
layer { | |
name: "loss_stage3_L2" | |
type: "EuclideanLoss" | |
bottom: "weight_stage3_L2" | |
bottom: "label_heat" | |
top: "loss_stage3_L2" | |
loss_weight: 1 | |
} | |
layer { | |
name: "concat_stage4" | |
type: "Concat" | |
bottom: "Mconv7_stage3_L1" | |
bottom: "Mconv7_stage3_L2" | |
bottom: "conv4_4_CPM" | |
top: "concat_stage4" | |
concat_param { | |
axis: 1 | |
} | |
} | |
layer { | |
name: "Mconv1_stage4_L1" | |
type: "Convolution" | |
bottom: "concat_stage4" | |
top: "Mconv1_stage4_L1" | |
param { | |
lr_mult: 4.0 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 8.0 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 128 | |
pad: 3 | |
kernel_size: 7 | |
weight_filler { | |
type: "gaussian" | |
std: 0.01 | |
} | |
bias_filler { | |
type: "constant" | |
} | |
} | |
} | |
layer { | |
name: "Mrelu1_stage4_L1" | |
type: "ReLU" | |
bottom: "Mconv1_stage4_L1" | |
top: "Mconv1_stage4_L1" | |
} | |
layer { | |
name: "Mconv1_stage4_L2" | |
type: "Convolution" | |
bottom: "concat_stage4" | |
top: "Mconv1_stage4_L2" | |
param { | |
lr_mult: 4.0 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 8.0 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 128 | |
pad: 3 | |
kernel_size: 7 | |
weight_filler { | |
type: "gaussian" | |
std: 0.01 | |
} | |
bias_filler { | |
type: "constant" | |
} | |
} | |
} | |
layer { | |
name: "Mrelu1_stage4_L2" | |
type: "ReLU" | |
bottom: "Mconv1_stage4_L2" | |
top: "Mconv1_stage4_L2" | |
} | |
layer { | |
name: "Mconv2_stage4_L1" | |
type: "Convolution" | |
bottom: "Mconv1_stage4_L1" | |
top: "Mconv2_stage4_L1" | |
param { | |
lr_mult: 4.0 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 8.0 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 128 | |
pad: 3 | |
kernel_size: 7 | |
weight_filler { | |
type: "gaussian" | |
std: 0.01 | |
} | |
bias_filler { | |
type: "constant" | |
} | |
} | |
} | |
layer { | |
name: "Mrelu2_stage4_L1" | |
type: "ReLU" | |
bottom: "Mconv2_stage4_L1" | |
top: "Mconv2_stage4_L1" | |
} | |
layer { | |
name: "Mconv2_stage4_L2" | |
type: "Convolution" | |
bottom: "Mconv1_stage4_L2" | |
top: "Mconv2_stage4_L2" | |
param { | |
lr_mult: 4.0 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 8.0 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 128 | |
pad: 3 | |
kernel_size: 7 | |
weight_filler { | |
type: "gaussian" | |
std: 0.01 | |
} | |
bias_filler { | |
type: "constant" | |
} | |
} | |
} | |
layer { | |
name: "Mrelu2_stage4_L2" | |
type: "ReLU" | |
bottom: "Mconv2_stage4_L2" | |
top: "Mconv2_stage4_L2" | |
} | |
layer { | |
name: "Mconv3_stage4_L1" | |
type: "Convolution" | |
bottom: "Mconv2_stage4_L1" | |
top: "Mconv3_stage4_L1" | |
param { | |
lr_mult: 4.0 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 8.0 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 128 | |
pad: 3 | |
kernel_size: 7 | |
weight_filler { | |
type: "gaussian" | |
std: 0.01 | |
} | |
bias_filler { | |
type: "constant" | |
} | |
} | |
} | |
layer { | |
name: "Mrelu3_stage4_L1" | |
type: "ReLU" | |
bottom: "Mconv3_stage4_L1" | |
top: "Mconv3_stage4_L1" | |
} | |
layer { | |
name: "Mconv3_stage4_L2" | |
type: "Convolution" | |
bottom: "Mconv2_stage4_L2" | |
top: "Mconv3_stage4_L2" | |
param { | |
lr_mult: 4.0 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 8.0 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 128 | |
pad: 3 | |
kernel_size: 7 | |
weight_filler { | |
type: "gaussian" | |
std: 0.01 | |
} | |
bias_filler { | |
type: "constant" | |
} | |
} | |
} | |
layer { | |
name: "Mrelu3_stage4_L2" | |
type: "ReLU" | |
bottom: "Mconv3_stage4_L2" | |
top: "Mconv3_stage4_L2" | |
} | |
layer { | |
name: "Mconv4_stage4_L1" | |
type: "Convolution" | |
bottom: "Mconv3_stage4_L1" | |
top: "Mconv4_stage4_L1" | |
param { | |
lr_mult: 4.0 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 8.0 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 128 | |
pad: 3 | |
kernel_size: 7 | |
weight_filler { | |
type: "gaussian" | |
std: 0.01 | |
} | |
bias_filler { | |
type: "constant" | |
} | |
} | |
} | |
layer { | |
name: "Mrelu4_stage4_L1" | |
type: "ReLU" | |
bottom: "Mconv4_stage4_L1" | |
top: "Mconv4_stage4_L1" | |
} | |
layer { | |
name: "Mconv4_stage4_L2" | |
type: "Convolution" | |
bottom: "Mconv3_stage4_L2" | |
top: "Mconv4_stage4_L2" | |
param { | |
lr_mult: 4.0 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 8.0 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 128 | |
pad: 3 | |
kernel_size: 7 | |
weight_filler { | |
type: "gaussian" | |
std: 0.01 | |
} | |
bias_filler { | |
type: "constant" | |
} | |
} | |
} | |
layer { | |
name: "Mrelu4_stage4_L2" | |
type: "ReLU" | |
bottom: "Mconv4_stage4_L2" | |
top: "Mconv4_stage4_L2" | |
} | |
layer { | |
name: "Mconv5_stage4_L1" | |
type: "Convolution" | |
bottom: "Mconv4_stage4_L1" | |
top: "Mconv5_stage4_L1" | |
param { | |
lr_mult: 4.0 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 8.0 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 128 | |
pad: 3 | |
kernel_size: 7 | |
weight_filler { | |
type: "gaussian" | |
std: 0.01 | |
} | |
bias_filler { | |
type: "constant" | |
} | |
} | |
} | |
layer { | |
name: "Mrelu5_stage4_L1" | |
type: "ReLU" | |
bottom: "Mconv5_stage4_L1" | |
top: "Mconv5_stage4_L1" | |
} | |
layer { | |
name: "Mconv5_stage4_L2" | |
type: "Convolution" | |
bottom: "Mconv4_stage4_L2" | |
top: "Mconv5_stage4_L2" | |
param { | |
lr_mult: 4.0 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 8.0 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 128 | |
pad: 3 | |
kernel_size: 7 | |
weight_filler { | |
type: "gaussian" | |
std: 0.01 | |
} | |
bias_filler { | |
type: "constant" | |
} | |
} | |
} | |
layer { | |
name: "Mrelu5_stage4_L2" | |
type: "ReLU" | |
bottom: "Mconv5_stage4_L2" | |
top: "Mconv5_stage4_L2" | |
} | |
layer { | |
name: "Mconv6_stage4_L1" | |
type: "Convolution" | |
bottom: "Mconv5_stage4_L1" | |
top: "Mconv6_stage4_L1" | |
param { | |
lr_mult: 4.0 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 8.0 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 128 | |
pad: 0 | |
kernel_size: 1 | |
weight_filler { | |
type: "gaussian" | |
std: 0.01 | |
} | |
bias_filler { | |
type: "constant" | |
} | |
} | |
} | |
layer { | |
name: "Mrelu6_stage4_L1" | |
type: "ReLU" | |
bottom: "Mconv6_stage4_L1" | |
top: "Mconv6_stage4_L1" | |
} | |
layer { | |
name: "Mconv6_stage4_L2" | |
type: "Convolution" | |
bottom: "Mconv5_stage4_L2" | |
top: "Mconv6_stage4_L2" | |
param { | |
lr_mult: 4.0 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 8.0 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 128 | |
pad: 0 | |
kernel_size: 1 | |
weight_filler { | |
type: "gaussian" | |
std: 0.01 | |
} | |
bias_filler { | |
type: "constant" | |
} | |
} | |
} | |
layer { | |
name: "Mrelu6_stage4_L2" | |
type: "ReLU" | |
bottom: "Mconv6_stage4_L2" | |
top: "Mconv6_stage4_L2" | |
} | |
layer { | |
name: "Mconv7_stage4_L1" | |
type: "Convolution" | |
bottom: "Mconv6_stage4_L1" | |
top: "Mconv7_stage4_L1" | |
param { | |
lr_mult: 4.0 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 8.0 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 38 | |
pad: 0 | |
kernel_size: 1 | |
weight_filler { | |
type: "gaussian" | |
std: 0.01 | |
} | |
bias_filler { | |
type: "constant" | |
} | |
} | |
} | |
layer { | |
name: "Mconv7_stage4_L2" | |
type: "Convolution" | |
bottom: "Mconv6_stage4_L2" | |
top: "Mconv7_stage4_L2" | |
param { | |
lr_mult: 4.0 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 8.0 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 19 | |
pad: 0 | |
kernel_size: 1 | |
weight_filler { | |
type: "gaussian" | |
std: 0.01 | |
} | |
bias_filler { | |
type: "constant" | |
} | |
} | |
} | |
layer { | |
name: "weight_stage4_L1" | |
type: "Eltwise" | |
bottom: "Mconv7_stage4_L1" | |
bottom: "vec_weight" | |
top: "weight_stage4_L1" | |
eltwise_param { | |
operation: PROD | |
} | |
} | |
layer { | |
name: "loss_stage4_L1" | |
type: "EuclideanLoss" | |
bottom: "weight_stage4_L1" | |
bottom: "label_vec" | |
top: "loss_stage4_L1" | |
loss_weight: 1 | |
} | |
layer { | |
name: "weight_stage4_L2" | |
type: "Eltwise" | |
bottom: "Mconv7_stage4_L2" | |
bottom: "heat_weight" | |
top: "weight_stage4_L2" | |
eltwise_param { | |
operation: PROD | |
} | |
} | |
layer { | |
name: "loss_stage4_L2" | |
type: "EuclideanLoss" | |
bottom: "weight_stage4_L2" | |
bottom: "label_heat" | |
top: "loss_stage4_L2" | |
loss_weight: 1 | |
} | |
layer { | |
name: "concat_stage5" | |
type: "Concat" | |
bottom: "Mconv7_stage4_L1" | |
bottom: "Mconv7_stage4_L2" | |
bottom: "conv4_4_CPM" | |
top: "concat_stage5" | |
concat_param { | |
axis: 1 | |
} | |
} | |
layer { | |
name: "Mconv1_stage5_L1" | |
type: "Convolution" | |
bottom: "concat_stage5" | |
top: "Mconv1_stage5_L1" | |
param { | |
lr_mult: 4.0 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 8.0 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 128 | |
pad: 3 | |
kernel_size: 7 | |
weight_filler { | |
type: "gaussian" | |
std: 0.01 | |
} | |
bias_filler { | |
type: "constant" | |
} | |
} | |
} | |
layer { | |
name: "Mrelu1_stage5_L1" | |
type: "ReLU" | |
bottom: "Mconv1_stage5_L1" | |
top: "Mconv1_stage5_L1" | |
} | |
layer { | |
name: "Mconv1_stage5_L2" | |
type: "Convolution" | |
bottom: "concat_stage5" | |
top: "Mconv1_stage5_L2" | |
param { | |
lr_mult: 4.0 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 8.0 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 128 | |
pad: 3 | |
kernel_size: 7 | |
weight_filler { | |
type: "gaussian" | |
std: 0.01 | |
} | |
bias_filler { | |
type: "constant" | |
} | |
} | |
} | |
layer { | |
name: "Mrelu1_stage5_L2" | |
type: "ReLU" | |
bottom: "Mconv1_stage5_L2" | |
top: "Mconv1_stage5_L2" | |
} | |
layer { | |
name: "Mconv2_stage5_L1" | |
type: "Convolution" | |
bottom: "Mconv1_stage5_L1" | |
top: "Mconv2_stage5_L1" | |
param { | |
lr_mult: 4.0 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 8.0 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 128 | |
pad: 3 | |
kernel_size: 7 | |
weight_filler { | |
type: "gaussian" | |
std: 0.01 | |
} | |
bias_filler { | |
type: "constant" | |
} | |
} | |
} | |
layer { | |
name: "Mrelu2_stage5_L1" | |
type: "ReLU" | |
bottom: "Mconv2_stage5_L1" | |
top: "Mconv2_stage5_L1" | |
} | |
layer { | |
name: "Mconv2_stage5_L2" | |
type: "Convolution" | |
bottom: "Mconv1_stage5_L2" | |
top: "Mconv2_stage5_L2" | |
param { | |
lr_mult: 4.0 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 8.0 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 128 | |
pad: 3 | |
kernel_size: 7 | |
weight_filler { | |
type: "gaussian" | |
std: 0.01 | |
} | |
bias_filler { | |
type: "constant" | |
} | |
} | |
} | |
layer { | |
name: "Mrelu2_stage5_L2" | |
type: "ReLU" | |
bottom: "Mconv2_stage5_L2" | |
top: "Mconv2_stage5_L2" | |
} | |
layer { | |
name: "Mconv3_stage5_L1" | |
type: "Convolution" | |
bottom: "Mconv2_stage5_L1" | |
top: "Mconv3_stage5_L1" | |
param { | |
lr_mult: 4.0 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 8.0 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 128 | |
pad: 3 | |
kernel_size: 7 | |
weight_filler { | |
type: "gaussian" | |
std: 0.01 | |
} | |
bias_filler { | |
type: "constant" | |
} | |
} | |
} | |
layer { | |
name: "Mrelu3_stage5_L1" | |
type: "ReLU" | |
bottom: "Mconv3_stage5_L1" | |
top: "Mconv3_stage5_L1" | |
} | |
layer { | |
name: "Mconv3_stage5_L2" | |
type: "Convolution" | |
bottom: "Mconv2_stage5_L2" | |
top: "Mconv3_stage5_L2" | |
param { | |
lr_mult: 4.0 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 8.0 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 128 | |
pad: 3 | |
kernel_size: 7 | |
weight_filler { | |
type: "gaussian" | |
std: 0.01 | |
} | |
bias_filler { | |
type: "constant" | |
} | |
} | |
} | |
layer { | |
name: "Mrelu3_stage5_L2" | |
type: "ReLU" | |
bottom: "Mconv3_stage5_L2" | |
top: "Mconv3_stage5_L2" | |
} | |
layer { | |
name: "Mconv4_stage5_L1" | |
type: "Convolution" | |
bottom: "Mconv3_stage5_L1" | |
top: "Mconv4_stage5_L1" | |
param { | |
lr_mult: 4.0 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 8.0 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 128 | |
pad: 3 | |
kernel_size: 7 | |
weight_filler { | |
type: "gaussian" | |
std: 0.01 | |
} | |
bias_filler { | |
type: "constant" | |
} | |
} | |
} | |
layer { | |
name: "Mrelu4_stage5_L1" | |
type: "ReLU" | |
bottom: "Mconv4_stage5_L1" | |
top: "Mconv4_stage5_L1" | |
} | |
layer { | |
name: "Mconv4_stage5_L2" | |
type: "Convolution" | |
bottom: "Mconv3_stage5_L2" | |
top: "Mconv4_stage5_L2" | |
param { | |
lr_mult: 4.0 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 8.0 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 128 | |
pad: 3 | |
kernel_size: 7 | |
weight_filler { | |
type: "gaussian" | |
std: 0.01 | |
} | |
bias_filler { | |
type: "constant" | |
} | |
} | |
} | |
layer { | |
name: "Mrelu4_stage5_L2" | |
type: "ReLU" | |
bottom: "Mconv4_stage5_L2" | |
top: "Mconv4_stage5_L2" | |
} | |
layer { | |
name: "Mconv5_stage5_L1" | |
type: "Convolution" | |
bottom: "Mconv4_stage5_L1" | |
top: "Mconv5_stage5_L1" | |
param { | |
lr_mult: 4.0 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 8.0 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 128 | |
pad: 3 | |
kernel_size: 7 | |
weight_filler { | |
type: "gaussian" | |
std: 0.01 | |
} | |
bias_filler { | |
type: "constant" | |
} | |
} | |
} | |
layer { | |
name: "Mrelu5_stage5_L1" | |
type: "ReLU" | |
bottom: "Mconv5_stage5_L1" | |
top: "Mconv5_stage5_L1" | |
} | |
layer { | |
name: "Mconv5_stage5_L2" | |
type: "Convolution" | |
bottom: "Mconv4_stage5_L2" | |
top: "Mconv5_stage5_L2" | |
param { | |
lr_mult: 4.0 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 8.0 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 128 | |
pad: 3 | |
kernel_size: 7 | |
weight_filler { | |
type: "gaussian" | |
std: 0.01 | |
} | |
bias_filler { | |
type: "constant" | |
} | |
} | |
} | |
layer { | |
name: "Mrelu5_stage5_L2" | |
type: "ReLU" | |
bottom: "Mconv5_stage5_L2" | |
top: "Mconv5_stage5_L2" | |
} | |
layer { | |
name: "Mconv6_stage5_L1" | |
type: "Convolution" | |
bottom: "Mconv5_stage5_L1" | |
top: "Mconv6_stage5_L1" | |
param { | |
lr_mult: 4.0 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 8.0 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 128 | |
pad: 0 | |
kernel_size: 1 | |
weight_filler { | |
type: "gaussian" | |
std: 0.01 | |
} | |
bias_filler { | |
type: "constant" | |
} | |
} | |
} | |
layer { | |
name: "Mrelu6_stage5_L1" | |
type: "ReLU" | |
bottom: "Mconv6_stage5_L1" | |
top: "Mconv6_stage5_L1" | |
} | |
layer { | |
name: "Mconv6_stage5_L2" | |
type: "Convolution" | |
bottom: "Mconv5_stage5_L2" | |
top: "Mconv6_stage5_L2" | |
param { | |
lr_mult: 4.0 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 8.0 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 128 | |
pad: 0 | |
kernel_size: 1 | |
weight_filler { | |
type: "gaussian" | |
std: 0.01 | |
} | |
bias_filler { | |
type: "constant" | |
} | |
} | |
} | |
layer { | |
name: "Mrelu6_stage5_L2" | |
type: "ReLU" | |
bottom: "Mconv6_stage5_L2" | |
top: "Mconv6_stage5_L2" | |
} | |
layer { | |
name: "Mconv7_stage5_L1" | |
type: "Convolution" | |
bottom: "Mconv6_stage5_L1" | |
top: "Mconv7_stage5_L1" | |
param { | |
lr_mult: 4.0 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 8.0 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 38 | |
pad: 0 | |
kernel_size: 1 | |
weight_filler { | |
type: "gaussian" | |
std: 0.01 | |
} | |
bias_filler { | |
type: "constant" | |
} | |
} | |
} | |
layer { | |
name: "Mconv7_stage5_L2" | |
type: "Convolution" | |
bottom: "Mconv6_stage5_L2" | |
top: "Mconv7_stage5_L2" | |
param { | |
lr_mult: 4.0 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 8.0 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 19 | |
pad: 0 | |
kernel_size: 1 | |
weight_filler { | |
type: "gaussian" | |
std: 0.01 | |
} | |
bias_filler { | |
type: "constant" | |
} | |
} | |
} | |
layer { | |
name: "weight_stage5_L1" | |
type: "Eltwise" | |
bottom: "Mconv7_stage5_L1" | |
bottom: "vec_weight" | |
top: "weight_stage5_L1" | |
eltwise_param { | |
operation: PROD | |
} | |
} | |
layer { | |
name: "loss_stage5_L1" | |
type: "EuclideanLoss" | |
bottom: "weight_stage5_L1" | |
bottom: "label_vec" | |
top: "loss_stage5_L1" | |
loss_weight: 1 | |
} | |
layer { | |
name: "weight_stage5_L2" | |
type: "Eltwise" | |
bottom: "Mconv7_stage5_L2" | |
bottom: "heat_weight" | |
top: "weight_stage5_L2" | |
eltwise_param { | |
operation: PROD | |
} | |
} | |
layer { | |
name: "loss_stage5_L2" | |
type: "EuclideanLoss" | |
bottom: "weight_stage5_L2" | |
bottom: "label_heat" | |
top: "loss_stage5_L2" | |
loss_weight: 1 | |
} | |
layer { | |
name: "concat_stage6" | |
type: "Concat" | |
bottom: "Mconv7_stage5_L1" | |
bottom: "Mconv7_stage5_L2" | |
bottom: "conv4_4_CPM" | |
top: "concat_stage6" | |
concat_param { | |
axis: 1 | |
} | |
} | |
layer { | |
name: "Mconv1_stage6_L1" | |
type: "Convolution" | |
bottom: "concat_stage6" | |
top: "Mconv1_stage6_L1" | |
param { | |
lr_mult: 4.0 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 8.0 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 128 | |
pad: 3 | |
kernel_size: 7 | |
weight_filler { | |
type: "gaussian" | |
std: 0.01 | |
} | |
bias_filler { | |
type: "constant" | |
} | |
} | |
} | |
layer { | |
name: "Mrelu1_stage6_L1" | |
type: "ReLU" | |
bottom: "Mconv1_stage6_L1" | |
top: "Mconv1_stage6_L1" | |
} | |
layer { | |
name: "Mconv1_stage6_L2" | |
type: "Convolution" | |
bottom: "concat_stage6" | |
top: "Mconv1_stage6_L2" | |
param { | |
lr_mult: 4.0 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 8.0 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 128 | |
pad: 3 | |
kernel_size: 7 | |
weight_filler { | |
type: "gaussian" | |
std: 0.01 | |
} | |
bias_filler { | |
type: "constant" | |
} | |
} | |
} | |
layer { | |
name: "Mrelu1_stage6_L2" | |
type: "ReLU" | |
bottom: "Mconv1_stage6_L2" | |
top: "Mconv1_stage6_L2" | |
} | |
layer { | |
name: "Mconv2_stage6_L1" | |
type: "Convolution" | |
bottom: "Mconv1_stage6_L1" | |
top: "Mconv2_stage6_L1" | |
param { | |
lr_mult: 4.0 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 8.0 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 128 | |
pad: 3 | |
kernel_size: 7 | |
weight_filler { | |
type: "gaussian" | |
std: 0.01 | |
} | |
bias_filler { | |
type: "constant" | |
} | |
} | |
} | |
layer { | |
name: "Mrelu2_stage6_L1" | |
type: "ReLU" | |
bottom: "Mconv2_stage6_L1" | |
top: "Mconv2_stage6_L1" | |
} | |
layer { | |
name: "Mconv2_stage6_L2" | |
type: "Convolution" | |
bottom: "Mconv1_stage6_L2" | |
top: "Mconv2_stage6_L2" | |
param { | |
lr_mult: 4.0 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 8.0 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 128 | |
pad: 3 | |
kernel_size: 7 | |
weight_filler { | |
type: "gaussian" | |
std: 0.01 | |
} | |
bias_filler { | |
type: "constant" | |
} | |
} | |
} | |
layer { | |
name: "Mrelu2_stage6_L2" | |
type: "ReLU" | |
bottom: "Mconv2_stage6_L2" | |
top: "Mconv2_stage6_L2" | |
} | |
layer { | |
name: "Mconv3_stage6_L1" | |
type: "Convolution" | |
bottom: "Mconv2_stage6_L1" | |
top: "Mconv3_stage6_L1" | |
param { | |
lr_mult: 4.0 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 8.0 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 128 | |
pad: 3 | |
kernel_size: 7 | |
weight_filler { | |
type: "gaussian" | |
std: 0.01 | |
} | |
bias_filler { | |
type: "constant" | |
} | |
} | |
} | |
layer { | |
name: "Mrelu3_stage6_L1" | |
type: "ReLU" | |
bottom: "Mconv3_stage6_L1" | |
top: "Mconv3_stage6_L1" | |
} | |
layer { | |
name: "Mconv3_stage6_L2" | |
type: "Convolution" | |
bottom: "Mconv2_stage6_L2" | |
top: "Mconv3_stage6_L2" | |
param { | |
lr_mult: 4.0 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 8.0 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 128 | |
pad: 3 | |
kernel_size: 7 | |
weight_filler { | |
type: "gaussian" | |
std: 0.01 | |
} | |
bias_filler { | |
type: "constant" | |
} | |
} | |
} | |
layer { | |
name: "Mrelu3_stage6_L2" | |
type: "ReLU" | |
bottom: "Mconv3_stage6_L2" | |
top: "Mconv3_stage6_L2" | |
} | |
layer { | |
name: "Mconv4_stage6_L1" | |
type: "Convolution" | |
bottom: "Mconv3_stage6_L1" | |
top: "Mconv4_stage6_L1" | |
param { | |
lr_mult: 4.0 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 8.0 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 128 | |
pad: 3 | |
kernel_size: 7 | |
weight_filler { | |
type: "gaussian" | |
std: 0.01 | |
} | |
bias_filler { | |
type: "constant" | |
} | |
} | |
} | |
layer { | |
name: "Mrelu4_stage6_L1" | |
type: "ReLU" | |
bottom: "Mconv4_stage6_L1" | |
top: "Mconv4_stage6_L1" | |
} | |
layer { | |
name: "Mconv4_stage6_L2" | |
type: "Convolution" | |
bottom: "Mconv3_stage6_L2" | |
top: "Mconv4_stage6_L2" | |
param { | |
lr_mult: 4.0 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 8.0 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 128 | |
pad: 3 | |
kernel_size: 7 | |
weight_filler { | |
type: "gaussian" | |
std: 0.01 | |
} | |
bias_filler { | |
type: "constant" | |
} | |
} | |
} | |
layer { | |
name: "Mrelu4_stage6_L2" | |
type: "ReLU" | |
bottom: "Mconv4_stage6_L2" | |
top: "Mconv4_stage6_L2" | |
} | |
layer { | |
name: "Mconv5_stage6_L1" | |
type: "Convolution" | |
bottom: "Mconv4_stage6_L1" | |
top: "Mconv5_stage6_L1" | |
param { | |
lr_mult: 4.0 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 8.0 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 128 | |
pad: 3 | |
kernel_size: 7 | |
weight_filler { | |
type: "gaussian" | |
std: 0.01 | |
} | |
bias_filler { | |
type: "constant" | |
} | |
} | |
} | |
layer { | |
name: "Mrelu5_stage6_L1" | |
type: "ReLU" | |
bottom: "Mconv5_stage6_L1" | |
top: "Mconv5_stage6_L1" | |
} | |
layer { | |
name: "Mconv5_stage6_L2" | |
type: "Convolution" | |
bottom: "Mconv4_stage6_L2" | |
top: "Mconv5_stage6_L2" | |
param { | |
lr_mult: 4.0 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 8.0 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 128 | |
pad: 3 | |
kernel_size: 7 | |
weight_filler { | |
type: "gaussian" | |
std: 0.01 | |
} | |
bias_filler { | |
type: "constant" | |
} | |
} | |
} | |
layer { | |
name: "Mrelu5_stage6_L2" | |
type: "ReLU" | |
bottom: "Mconv5_stage6_L2" | |
top: "Mconv5_stage6_L2" | |
} | |
layer { | |
name: "Mconv6_stage6_L1" | |
type: "Convolution" | |
bottom: "Mconv5_stage6_L1" | |
top: "Mconv6_stage6_L1" | |
param { | |
lr_mult: 4.0 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 8.0 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 128 | |
pad: 0 | |
kernel_size: 1 | |
weight_filler { | |
type: "gaussian" | |
std: 0.01 | |
} | |
bias_filler { | |
type: "constant" | |
} | |
} | |
} | |
layer { | |
name: "Mrelu6_stage6_L1" | |
type: "ReLU" | |
bottom: "Mconv6_stage6_L1" | |
top: "Mconv6_stage6_L1" | |
} | |
layer { | |
name: "Mconv6_stage6_L2" | |
type: "Convolution" | |
bottom: "Mconv5_stage6_L2" | |
top: "Mconv6_stage6_L2" | |
param { | |
lr_mult: 4.0 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 8.0 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 128 | |
pad: 0 | |
kernel_size: 1 | |
weight_filler { | |
type: "gaussian" | |
std: 0.01 | |
} | |
bias_filler { | |
type: "constant" | |
} | |
} | |
} | |
layer { | |
name: "Mrelu6_stage6_L2" | |
type: "ReLU" | |
bottom: "Mconv6_stage6_L2" | |
top: "Mconv6_stage6_L2" | |
} | |
layer { | |
name: "Mconv7_stage6_L1" | |
type: "Convolution" | |
bottom: "Mconv6_stage6_L1" | |
top: "Mconv7_stage6_L1" | |
param { | |
lr_mult: 4.0 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 8.0 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 38 | |
pad: 0 | |
kernel_size: 1 | |
weight_filler { | |
type: "gaussian" | |
std: 0.01 | |
} | |
bias_filler { | |
type: "constant" | |
} | |
} | |
} | |
layer { | |
name: "Mconv7_stage6_L2" | |
type: "Convolution" | |
bottom: "Mconv6_stage6_L2" | |
top: "Mconv7_stage6_L2" | |
param { | |
lr_mult: 4.0 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 8.0 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 19 | |
pad: 0 | |
kernel_size: 1 | |
weight_filler { | |
type: "gaussian" | |
std: 0.01 | |
} | |
bias_filler { | |
type: "constant" | |
} | |
} | |
} | |
layer { | |
name: "weight_stage6_L1" | |
type: "Eltwise" | |
bottom: "Mconv7_stage6_L1" | |
bottom: "vec_weight" | |
top: "weight_stage6_L1" | |
eltwise_param { | |
operation: PROD | |
} | |
} | |
layer { | |
name: "loss_stage6_L1" | |
type: "EuclideanLoss" | |
bottom: "weight_stage6_L1" | |
bottom: "label_vec" | |
top: "loss_stage6_L1" | |
loss_weight: 1 | |
} | |
layer { | |
name: "weight_stage6_L2" | |
type: "Eltwise" | |
bottom: "Mconv7_stage6_L2" | |
bottom: "heat_weight" | |
top: "weight_stage6_L2" | |
eltwise_param { | |
operation: PROD | |
} | |
} | |
layer { | |
name: "loss_stage6_L2" | |
type: "EuclideanLoss" | |
bottom: "weight_stage6_L2" | |
bottom: "label_heat" | |
top: "loss_stage6_L2" | |
loss_weight: 1 | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment