Last active
June 17, 2019 21:55
-
-
Save belltailjp/9b6028ad6ac8bf67a31c49efc7f4d63b to your computer and use it in GitHub Desktop.
Multi-Dimensional Scaling (also as known as Principal Coordinate Analysis) by Python
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import matplotlib.pyplot as plt | |
import numpy as np | |
from sklearn import manifold | |
cities = "Athens Barcelona Brussels Calais Cherbourg Cologne Copenhagen Geneva Gibraltar Hamburg HookOfHolland Lisbon Lyons Madrid Marseilles Milan Munich Paris Rome Stockholm Vienna".split(" ") | |
d = np.array([ | |
# from eurodist dataset: https://rstudio-pubs-static.s3.amazonaws.com/221886_5c57ad0f5ff546e8af6386162f29fabc.html | |
[ 0, 3313, 2963, 3175, 3339, 2762, 3276, 2610, 4485, 2977, 3030, 4532, 2753, 3949, 2865, 2282, 2179, 3000, 817, 3927, 1991], | |
[3313, 0, 1318, 1326, 1294, 1498, 2218, 803, 1172, 2018, 1490, 1305, 645, 636, 521, 1014, 1365, 1033, 1460, 2868, 1802], | |
[2963, 1318, 0, 204, 583, 206, 966, 677, 2256, 597, 172, 2084, 690, 1558, 1011, 925, 747, 285, 1511, 1616, 1175], | |
[3175, 1326, 204, 0, 460, 409, 1136, 747, 2224, 714, 330, 2052, 739, 1550, 1059, 1077, 977, 280, 1662, 1786, 1381], | |
[3339, 1294, 583, 460, 0, 785, 1545, 853, 2047, 1115, 731, 1827, 789, 1347, 1101, 1209, 1160, 340, 1794, 2196, 1588], | |
[2762, 1498, 206, 409, 785, 0, 760, 1662, 2436, 460, 269, 2290, 714, 1764, 1035, 911, 583, 465, 1497, 1403, 937], | |
[3276, 2218, 966, 1136, 1545, 760, 0, 1418, 3196, 460, 269, 2971, 1458, 2498, 1778, 1537, 1104, 1176, 2050, 650, 1455], | |
[2610, 803, 677, 747, 853, 1662, 1418, 0, 1975, 1118, 895, 1936, 158, 1439, 425, 328, 591, 513, 995, 2068, 1019], | |
[4485, 1172, 2256, 2224, 2047, 2436, 3196, 1975, 0, 2897, 2428, 676, 1817, 698, 1693, 2185, 2565, 1971, 2631, 3886, 2974], | |
[2977, 2018, 597, 714, 1115, 460, 460, 1118, 2897, 0, 550, 2671, 1159, 2198, 1479, 1238, 805, 877, 1751, 949, 1155], | |
[3030, 1490, 172, 330, 731, 269, 269, 895, 2428, 550, 0, 2280, 863, 1730, 1183, 1098, 851, 457, 1683, 1500, 1205], | |
[4532, 1305, 2084, 2052, 1827, 2290, 2971, 1936, 676, 2671, 2280, 0, 1178, 668, 1762, 2250, 2507, 1799, 2700, 3231, 2937], | |
[2753, 645, 690, 739, 789, 714, 1458, 158, 1817, 1159, 863, 1178, 0, 1281, 320, 328, 724, 471, 1048, 2108, 1157], | |
[3949, 636, 1558, 1550, 1347, 1764, 2498, 1439, 698, 2198, 1730, 668, 1281, 0, 1157, 1724, 2010, 1273, 2097, 3188, 2409], | |
[2865, 521, 1011, 1059, 1101, 1035, 1778, 425, 1693, 1479, 1183, 1762, 320, 1157, 0, 618, 1109, 792, 1011, 2428, 1363], | |
[2282, 1014, 925, 1077, 1209, 911, 1537, 328, 2185, 1238, 1098, 2250, 328, 1724, 618, 0, 331, 856, 586, 2187, 898], | |
[2179, 1365, 747, 977, 1160, 583, 1104, 591, 2565, 805, 851, 2507, 724, 2010, 1109, 331, 0, 821, 946, 1754, 428], | |
[3000, 1033, 285, 280, 340, 465, 1176, 513, 1971, 877, 457, 1799, 471, 1273, 792, 856, 821, 0, 1476, 1827, 1249], | |
[ 817, 1460, 1511, 1662, 1794, 1497, 2050, 995, 2631, 1751, 1683, 2700, 1048, 2097, 1011, 586, 946, 1476, 0, 2707, 1209], | |
[3927, 2868, 1616, 1786, 2196, 1403, 650, 2068, 3886, 949, 1500, 3231, 2108, 3188, 2428, 2187, 1754, 1827, 2707, 0, 2105], | |
[1991, 1802, 1175, 1381, 1588, 937, 1455, 1019, 2974, 1155, 1205, 2937, 1157, 2409, 1363, 898, 428, 1249, 1209, 2105, 0] | |
], dtype=np.float32) | |
mds = manifold.MDS(2, dissimilarity='precomputed') | |
coords = mds.fit_transform(d) | |
x, y = coords[:, 0], coords[:, 1] | |
fig, ax = plt.subplots() | |
ax.scatter(x, y) | |
for (city, _x, _y) in zip(cities, x, y): | |
ax.annotate(city, (_x, _y)) | |
plt.show() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
This result is consistent with http://hoxo-m.hatenablog.com/entry/20120313/p1