Created
September 13, 2012 03:40
-
-
Save bemasher/3711696 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
\documentclass[twocolumn,10pt]{article} | |
\usepackage[top=0.5cm, bottom=0.5cm, left=0.5cm, right=0.5cm]{geometry} | |
\usepackage{amssymb, amsmath, amstext} | |
\usepackage{datetime} | |
\usepackage{listings} | |
\usepackage[pdftex]{graphicx} | |
\usepackage{subfigure} | |
\usepackage{siunitx} | |
\usepackage{enumitem} | |
\setlist{nosep} | |
\setlist{noitemsep} | |
\setlength{\parindent}{0.0cm} | |
\setlength{\parskip}{0.1cm} | |
\newcommand{\defhead}[1]{\textbf{\underline{#1}:} \\} | |
\newcommand{\vect}[1]{\hat{\boldsymbol{#1}}} | |
\renewcommand{\familydefault}{\sfdefault} | |
\renewcommand{\thefootnote}{\arabic{footnote}} | |
\everymath{\allowdisplaybreaks\displaystyle} | |
\makeatletter | |
\renewcommand\@makefnmark{\@textsuperscript{\normalfont(\@thefnmark)}} | |
\makeatother | |
\begin{document} | |
\textbf{Probability and Set Theory}: | |
\begin{eqnarray*} | |
P[\phi] &=& 0 \\ | |
P[A^c] &=& 1 - P[A] \\ | |
P[AB] &=& P[A] \cap P[B] \\ | |
P[A\cup B] &=& P[A] + P[B] - P[A\cap B] \\ | |
\text{If } A \subset B &\text{ then }& P[A] \leq P[B] \\ | |
P[A|B] &=& \frac{P[AB]}{P[B]} = \frac{P[B|A]P[A]}{P[B]} \\ | |
P[B] &=& P[B|A]P[A]+P[B|A^c]P[A^c] \\ | |
\text{Indep. iff } P[AB] &=& P[A]P[B] \\ | |
&=& P[A|B] = P[A] \land P[B|A] = P[B] | |
\end{eqnarray*} | |
\textbf{Sampling} | |
\begin{eqnarray*} | |
k \text{-permutations } (n)_k &=& \frac{n!}{(n-k)!} \\ | |
n \text{ choose } k \; \binom{n}{k} &=& \binom{n}{n-k} = \frac{n!}{k!(n-k)!} | |
\end{eqnarray*} | |
\textbf{Bernoulli Trials\footnote{Where $p$ is probability of pass.}}: | |
\begin{eqnarray*} | |
P[\text{Exactly } k \text{ pass of }n] &=& \binom{n}{k}(1-p)^{n-k}p^k | |
\end{eqnarray*} | |
\textbf{Systems (Series)\footnotemark[\value{footnote}]}: | |
\begin{eqnarray*} | |
P[\text{Pass}] &=& p^n \\ | |
P[\text{Fail}] &=& 1 - p^n | |
\end{eqnarray*} | |
\textbf{Systems (Parallel)\footnotemark[\value{footnote}]}: | |
\begin{eqnarray*} | |
P[\text{Pass}] &=& 1 - (1 - p)^n \\ | |
P[\text{Fail}] &=& (1 - p)^n | |
\end{eqnarray*} | |
\textbf{Random Variable Distributions}: | |
\begin{itemize}[topsep=0pt] | |
\item Uniform - Equiprobable: $1/(l-k+1)$ | |
\item Bernoulli - Only two outcomes: $\left\{\begin{matrix} | |
1-p & x=0 \\ | |
p & x=1 \\ | |
0 & else | |
\end{matrix}\right.$ | |
\item Geometric - Pass after $n$ trials: $p(1-p)^{n-1}$ | |
\item Binomial - Number of passes in $n$ trials: $\binom{n}{k}p^k(1-p)^{n-k}$ | |
\item Pascal - Fails until pass on final in $n$ trials: $\binom{n-1}{k-1}p^k(1-p)^{n-k}$ | |
\item Poisson - Average passes per time: $\left\{\begin{matrix} | |
\frac{\alpha^x e^{-\alpha}}{x!} & x \geq 0, \alpha=\lambda T \\ | |
\lambda & \text{Pass per time} \\ | |
\end{matrix}\right.$ | |
\end{itemize} | |
\textbf{Operations on PMF}: | |
\begin{eqnarray*} | |
\text{CDF } F_X(x) &=& P[X\leq x] = \sum_{i=0}^{x} P[x_i] \\ | |
\text{Mode } P_X(x_\text{mod}) &\geq& P_X(x) \forall x \\ | |
\text{Median } P[X < x_\text{med}] &=& P[X > x_\text{med}] \\ | |
\end{eqnarray*} | |
\newpage | |
\textbf{Expected}: | |
\begin{itemize} | |
\item Expected $E[X] = \mu_X = \sum_{x\in S_X}x P_X(x)$ | |
\item Uniform $E[X] = (k+l)/2$ | |
\item Binomial $E[X]=np$ | |
\item Pascal $E[X]=k/p$ | |
\end{itemize} | |
\textbf{Variance, Std Dev}: | |
\begin{itemize} | |
\item Variance - $\sigma_X^2 = E[(X-\mu_X)^2] = E[X^2]-\mu_X^2$ | |
\item Std Dev - $\sqrt{\text{Var}[X]} = \sqrt{\sigma_X^2} = \sigma$ | |
\item Nth Moment - $E[X^n]$ | |
\item Nth Central Moment - $E[(X-\mu_X)^n]$ | |
\item Thm. 2.14 - $\text{Var}[aX+b]=a^2\text{Var}[X]$ | |
\end{itemize} | |
\textbf{Derived RV}: | |
\begin{itemize} | |
\item $E[Y] = \mu_Y = \sum_{x\in S_X}g(x)P_X(x)$ | |
\item $E[aX+b] = aE[X]+b$ | |
\end{itemize} | |
\textbf{Conditional RV}: | |
\begin{itemize} | |
\item $P_{X|B}(x) = P[X=x|B] = \left\{\begin{matrix}\frac{P_X(x)}{P[B]} & x \in B \\ 0 & \text{else}\end{matrix}\right.$ | |
\end{itemize} | |
\textbf{Cont. Uniform RV}: | |
\begin{itemize} | |
\item $f_X(x) = \left\{\begin{matrix}\frac{1}{b-a} & a \leq x < b \\ 0 & \text{else}\end{matrix}\right.$ | |
\item $F_X(x) = \left\{\begin{matrix}0 & x \leq a\\ \frac{x-a}{b-a} & a < x \leq b\\ 1 & x > b\end{matrix}\right.$ | |
\item $E[X]=\frac{a+b}{2}$ | |
\item Var$[X]=\frac{(b-a)^2}{12}$ | |
\end{itemize} | |
\textbf{Cont. Exponential RV}: | |
\begin{itemize} | |
\item $f_X(x) = \left\{\begin{matrix}\lambda e^{-\lambda x} & x \geq 0\\ 0 & \text{else}\end{matrix}\right.$ | |
\item $F_X(x) = \left\{\begin{matrix}1-e^{-\lambda x} & x \geq 0\\ 0 & \text{else}\end{matrix}\right.$ | |
\item $E[X] = \frac{1}{\lambda}$ | |
\item Var$[X]=\frac{1}{\lambda^2}$ | |
\end{itemize} | |
\textbf{Cont. Gaussian RV}: | |
\begin{itemize} | |
\item $f_X(x) = \frac{1}{\sqrt{2\pi\sigma^2}}e^{-(x-\mu)^2/2\sigma^2}$ | |
\item $F_X(x) = \Phi\left(\frac{x-\mu}{\sigma}\right) = \frac{1}{2}+\frac{1}{2}\text{Erf}\left(\frac{x}{\sqrt{2}}\right)$ | |
\item $\Phi(-z) = Q(z) = 1 - \Phi(z)$ | |
\item $E[X] = \mu$ | |
\item Var$[X] = \sigma^2$ | |
\end{itemize} | |
\newpage | |
\textbf{Inequalities}: | |
\begin{itemize} | |
\item Markov: $P[X\geq c^2] \leq \frac{E[X]}{c^2}$ (for $X>0$) | |
\item Chebyshev: $P[|Y-\mu_Y|\geq c] \leq \frac{\text{Var}[Y]}{c^2}$ (for $c\geq 0$) | |
\end{itemize} | |
\textbf{Estimates}: | |
\begin{itemize} | |
\item Mean Square Error: $e=E[(\hat{R} - r)^2]$ (Var for unbiased) | |
\item Sample Mean: Var$[M_n(X)]=\frac{\text{Var}[X]}{n}$ | |
\item Sample Var: $V_n(X)=\frac{1}{n}\sum_{i=1}^n(X_i-M_n(X))^2$ | |
\item $E[V_n(X)] = \frac{n-1}{n} \text{Var}[X]$ | |
\end{itemize} | |
\textbf{Confidence Intervals} | |
\begin{itemize} | |
\item $P[|M_n(X) - \mu_X| \geq c]\leq \frac{\text{Var}[X]}{nc^2}=\alpha$ | |
\item $P[|M_n(X) - \mu_X| < c] \geq 1 - \frac{\text{Var}[X]}{nc^2}= 1 - \alpha$ | |
\end{itemize} | |
\textbf{Gaussian Confidence Interval}: | |
\begin{itemize} | |
\item $M_n(X) - c \leq \mu \leq M_n(X) + c$ | |
\item $\alpha/2=Q\left(\frac{c\sqrt{x}}{\sigma}\right)=1-\Phi\left(\frac{c\sqrt{n}}{\sigma}\right)$ | |
\item $1-\alpha=1-2Q\left(\frac{c\sqrt{n}}{\sigma_X}\right)$ | |
\end{itemize} | |
\textbf{Significance Testing}: | |
\begin{itemize} | |
\item Type I Error: False Rejection | |
\item Type II Error: False Acceptance | |
\end{itemize} | |
\end{document} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment