Last active
November 27, 2021 03:10
-
-
Save bencbartlett/6ecda677e07dd922ab78c902f90bafd8 to your computer and use it in GitHub Desktop.
Mathematica code for this animation of transitions in hydrogen wavefunctions: https://twitter.com/bencbartlett/status/1287802625602117632
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
<< MaTeX` | |
SetOptions[MaTeX, "Preamble" -> {"\\usepackage{color,txfonts}"}]; | |
SetDirectory[NotebookDirectory[]]; | |
Clear[drawLadder]; | |
drawLadder[n_, l_, m_, imsize_: 500] := Module[{maxrungs = 5, mag = 4}, | |
Graphics[{ | |
White, Opacity[1], Thickness[.02], Dashing[None], | |
Table[Line[{{0, k}, {1, k}}], {k, maxrungs}], (*draw n lines*) | |
Gray, Dashed, Thickness[.005], Line[{{0, 0}, {1, 0}}], | |
Red, Opacity[.75], | |
Disk[{0.5, n}, .3], | |
White, Opacity[1], Thickness[.02], Dashing[None], | |
Table[ | |
Line[{{2, k}, {3, k}}], {k, 0, | |
Floor[n + 0.01] - 1}], (*draw l lines*) | |
Gray, Dashed, | |
Thickness[.005], | |
Table[Line[{{2, k}, {3, k}}], {k, Floor[n + 0.01], maxrungs}], | |
Blue, Opacity[.75], | |
Disk[{2.5, l}, .3], | |
White, Opacity[1], Thickness[.02], Dashing[None], | |
Table[ | |
Line[{{4, k}, {5, k}}], {k, 0, | |
Ceiling[l - 0.01]}], (*draw m lines*) | |
Gray, Dashed, | |
Thickness[.005], | |
Table[ | |
Line[{{4, k}, {5, k}}], {k, Ceiling[l - 0.01] + 1, maxrungs}], | |
Green, Opacity[.75], | |
Disk[{4.5, m}, .3], | |
White, Opacity[1], Thick, Dashing[None], | |
Text[ | |
MaTeX["\\color{white} n", Magnification -> mag], {.5, | |
maxrungs + 1}], | |
Text[ | |
MaTeX["\\color{white} l", Magnification -> mag], {2.5, | |
maxrungs + 1}], | |
Text[ | |
MaTeX["\\color{white} m", Magnification -> mag], {4.5, | |
maxrungs + 1}], | |
Table[ | |
Text[MaTeX["\\color{white} " <> ToString[k], | |
Magnification -> .5*mag], {5.8, k}], {k, 0, maxrungs}] | |
}, | |
(*Background\[Rule]Black,*) | |
Background -> Transparent, | |
ImageSize -> imsize | |
] | |
]; | |
(*drawLadder[3,2,0]*) | |
Clear[drawFrame]; | |
drawFrame[{n1_, l1_, m1_}, {n2_, l2_, m2_}, c1_, c2_] := | |
Module[{c1norm, c2norm}, | |
c1norm = c1/Sqrt[Abs[c1]^2 + Abs[c2]^2]; | |
c2norm = c2/Sqrt[Abs[c1]^2 + Abs[c2]^2]; | |
ListDensityPlot[ | |
Table[ | |
Module[{r = Norm[{x, 0, z}], eq1, eq2}, | |
eq1 = | |
Sqrt[4 \[Pi]] | |
r (Exp[-(r/n1)] r^ | |
l1 LaguerreL[n1 - 1 - l1, 2 l1 + 1, (2 r)/ | |
n1]) SphericalHarmonicY[l1, m1, ArcCos[z/r], ArcTan[x, 0]]; | |
eq2 = | |
Sqrt[4 \[Pi]] | |
r (Exp[-(r/n2)] r^ | |
l2 LaguerreL[n2 - 1 - l2, 2 l2 + 1, (2 r)/ | |
n2]) SphericalHarmonicY[l2, m2, ArcCos[z/r], ArcTan[x, 0]]; | |
Abs[c1norm*eq1 + c2norm*eq2]^2 | |
], {z, -40.1, 40, .5}, {x, -40.1, 80, .5}], | |
DataRange -> {{-40, 40}, {-40, 80}}, | |
AspectRatio -> .8/1.2, ImageSize -> 1000*{1.2, .8}, | |
Mesh -> False, Frame -> False, | |
(*InterpolationOrder\[Rule]1, | |
THIS CAUSES CRASHES*) | |
(*PlotPoints\[Rule]100, | |
MaxRecursion\[Rule]6,*) | |
ColorFunctionScaling -> True, | |
ColorFunction -> "SunsetColors", | |
Epilog -> Inset[ | |
drawLadder[ | |
(*n1*c1norm+n2*c2norm,m1*c1norm+m2*c2norm,l1*c1norm+l2*c2norm*) | |
n1*c1norm^2 + n2*c2norm^2, l1*c1norm^2 + l2*c2norm^2, | |
m1*c1norm^2 + m2*c2norm^2, 250], | |
(*{60,0},*) | |
{29, 20} | |
] | |
] | |
] | |
drawFrame[{4, 3, 3}, {5, 3, 3}, .5, .5] | |
(*drawFrame[{2,0,0},{2,1,0},1,.8]*) | |
Clear[renderFrame]; | |
renderFrame[t_] := Module[{tt = t - Floor[t], c1, c2, ttt}, | |
ttt = Piecewise[{{0, | |
tt < .1}, {(tt - .1)/(1 - .1 - .1), .1 <= tt < .9}, {1, | |
tt >= .9}}]; | |
c1 = Cos[\[Pi]/2 * ttt]; | |
c2 = Sin[\[Pi]/2 * ttt]; | |
Switch[Floor[t], | |
0, drawFrame[{5, 0, 0}, {4, 0, 0}, c1, c2], | |
1, drawFrame[{4, 0, 0}, {3, 0, 0}, c1, c2], | |
2, drawFrame[{3, 0, 0}, {3, 1, 0}, c1, c2], | |
3, drawFrame[{3, 1, 0}, {3, 1, 1}, c1, c2], | |
4, drawFrame[{3, 1, 1}, {4, 0, 0}, c1, c2], | |
5, drawFrame[{4, 0, 0}, {4, 1, 1}, c1, c2], | |
6, drawFrame[{4, 1, 1}, {4, 2, 1}, c1, c2], | |
7, drawFrame[{4, 2, 1}, {4, 3, 1}, c1, c2], | |
8, drawFrame[{4, 3, 1}, {5, 0, 0}, c1, c2], | |
9, drawFrame[{5, 0, 0}, {5, 1, 1}, c1, c2], | |
10, drawFrame[{5, 1, 1}, {5, 2, 1}, c1, c2], | |
11, drawFrame[{5, 2, 1}, {5, 3, 1}, c1, c2], | |
12, drawFrame[{5, 3, 1}, {5, 4, 1}, c1, c2], | |
13, drawFrame[{5, 4, 1}, {5, 3, 1}, c1, c2], | |
14, drawFrame[{5, 3, 1}, {5, 2, 1}, c1, c2], | |
15, drawFrame[{5, 2, 1}, {5, 1, 1}, c1, c2], | |
16, drawFrame[{5, 1, 1}, {4, 1, 1}, c1, c2], | |
17, drawFrame[{4, 1, 1}, {3, 1, 1}, c1, c2], | |
18, drawFrame[{3, 1, 1}, {2, 1, 1}, c1, c2], | |
19, drawFrame[{2, 1, 1}, {1, 0, 0}, c1, c2], | |
_, drawFrame[{2, 1, 0}, {1, 0, 0}, 0, 1] | |
] | |
]; | |
renderFrame[0.9] | |
Plot[ | |
Module[{}, | |
ttt = Piecewise[{{0, | |
x < .1}, {(x - .1)/(1 - .1 - .1), .1 <= x < .9}, {1, x > .9}}]; | |
c1 = Cos[\[Pi]/2 * ttt]; | |
c2 = Sin[\[Pi]/2 * ttt]; | |
2*c1^2 + 3*c2^2 | |
], {x, -1, 2}] | |
saveframe[tt_] := Module[{frame, title}, | |
frame = renderFrame[tt]; | |
title = IntegerString[Floor[tt*1000], 10, 8] <> ".png"; | |
Export["frames/" <> title, frame]; | |
]; | |
Monitor[Table[saveframe[t], {t, 0, 20, 1/120}], | |
ProgressIndicator[t, {0, 20}]]; |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment