Created
May 26, 2020 09:36
-
-
Save bendangnuksung/8e94434a8c85308c2933e419ec29755a to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import base64 | |
import requests | |
from datetime import datetime | |
import argparse | |
from tensorflow_serving.apis import predict_pb2 | |
from tensorflow_serving.apis import prediction_service_pb2_grpc | |
import grpc | |
import tensorflow as tf | |
tf_v = 2 | |
if tf.__version__.startswith('2'): | |
import tensorflow.compat.v1 as tf | |
tf.disable_v2_behavior() | |
else: | |
tf_v = 1 | |
parser = argparse.ArgumentParser(description='') | |
parser.add_argument('-p','--port', help='Description for foo argument', default='8500') | |
parser.add_argument('-ip','--ipaddress', help='Description for bar argument', default='localhost') | |
args = vars(parser.parse_args()) | |
SERVER_URL = 'http://ipaddress:port/v1/models/resnet:predict' | |
IMAGE_URL = 'https://tensorflow.org/images/blogs/serving/cat.jpg' | |
dl_request = requests.get(IMAGE_URL, stream=True) | |
dl_request.raise_for_status() | |
data = dl_request.content | |
jpeg_bytes = base64.b64encode(data).decode('utf-8') | |
def restapi_call(ip_address): | |
server_url = SERVER_URL.replace('ipaddress', str(ip_address)) | |
server_url = server_url.replace('port', '8501') | |
predict_request = '{"instances" : [{"b64": "%s"}]}' % jpeg_bytes | |
# warmup | |
for _ in range(2): | |
response = requests.post(server_url, data=predict_request) | |
response.raise_for_status() | |
num_requests = 10 | |
time_taken_list = [] | |
print("*"*30) | |
print("RESTAPI CALL: ") | |
print("*"*30) | |
for i in range(num_requests): | |
start = datetime.now() | |
response = requests.post(server_url, data=predict_request) | |
time_taken = (datetime.now() - start).total_seconds() | |
print(f"{i}. Time Taken: {time_taken}") | |
time_taken_list.append(time_taken) | |
total_time = sum(time_taken_list) | |
avg_time = total_time / len(time_taken_list) | |
print('Average time taken: ', avg_time) | |
def grpc_call(ip_address): | |
channel = grpc.insecure_channel(f'{ip_address}:8500') | |
stub = prediction_service_pb2_grpc.PredictionServiceStub(channel) | |
request = predict_pb2.PredictRequest() | |
request.model_spec.name = 'resnet' | |
request.model_spec.signature_name = 'serving_default' | |
if tf_v == 1: | |
request.inputs['image_bytes'].CopyFrom( | |
tf.contrib.util.make_tensor_proto(data, shape=[1])) | |
if tf_v == 2: | |
request.inputs['image_bytes'].CopyFrom( | |
tf.make_tensor_proto(data, shape=[1])) | |
# warmup | |
for i in range(2): | |
result = stub.Predict(request, 10.0) # 10 secs timeout | |
num_requests = 10 | |
time_taken_list = [] | |
print("*"*30) | |
print('GRPC CALL:') | |
print("*"*30) | |
for i in range(num_requests): | |
start = datetime.now() | |
result = stub.Predict(request, 10.0) # 10 secs timeout | |
time_taken = (datetime.now() - start).total_seconds() | |
print(f"{i}. Time Taken: {time_taken}") | |
time_taken_list.append(time_taken) | |
total_time = sum(time_taken_list) | |
avg_time = total_time / len(time_taken_list) | |
print('Average time taken: ', avg_time) | |
if __name__ == '__main__': | |
ip_address = args['ipaddress'] | |
port = args['port'] | |
if port == '8500': | |
grpc_call(ip_address) | |
else: | |
restapi_call(ip_address) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment