Created
September 29, 2023 14:52
-
-
Save benevpi/98f9fe806c85ce28e883a1eca844dc26 to your computer and use it in GitHub Desktop.
tflite with picamera 2
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#!/usr/bin/python3 | |
# Copyright (c) 2022 Raspberry Pi Ltd | |
# Author: Alasdair Allan <[email protected]> | |
# SPDX-License-Identifier: BSD-3-Clause | |
# A TensorFlow Lite example for Picamera2 on Raspberry Pi OS Bullseye | |
# | |
# Install necessary dependences before starting, | |
# | |
# $ sudo apt update | |
# $ sudo apt install build-essential | |
# $ sudo apt install libatlas-base-dev | |
# $ sudo apt install python3-pip | |
# $ pip3 install tflite-runtime | |
# $ pip3 install opencv-python==4.4.0.46 | |
# $ pip3 install pillow | |
# $ pip3 install numpy | |
# | |
# and run from the command line, | |
# | |
# $ python3 real_time_with_labels.py --model mobilenet_v2.tflite --label coco_labels.txt | |
import argparse | |
import cv2 | |
import numpy as np | |
import tflite_runtime.interpreter as tflite | |
from picamera2 import MappedArray, Picamera2, Preview | |
from libcamera import controls | |
normalSize = (1280, 960) | |
lowresSize = (640, 480) | |
rectangles = [] | |
def ReadLabelFile(file_path): | |
with open(file_path, 'r') as f: | |
lines = f.readlines() | |
ret = {} | |
for line in lines: | |
pair = line.strip().split(maxsplit=1) | |
ret[int(pair[0])] = pair[1].strip() | |
return ret | |
def DrawRectangles(request): | |
with MappedArray(request, "main") as m: | |
for rect in rectangles: | |
print(rect) | |
rect_start = (int(rect[0] * 2) - 5, int(rect[1] * 2) - 5) | |
rect_end = (int(rect[2] * 2) + 5, int(rect[3] * 2) + 5) | |
cv2.rectangle(m.array, rect_start, rect_end, (0, 255, 0, 0)) | |
if len(rect) == 5: | |
text = rect[4] | |
font = cv2.FONT_HERSHEY_SIMPLEX | |
cv2.putText(m.array, text, (int(rect[0] * 2) + 10, int(rect[1] * 2) + 10), | |
font, 1, (255, 255, 255), 2, cv2.LINE_AA) | |
def InferenceTensorFlow(image, model, output, label=None): | |
global rectangles | |
if label: | |
labels = ReadLabelFile(label) | |
else: | |
labels = None | |
interpreter = tflite.Interpreter(model_path=model, num_threads=4) | |
interpreter.allocate_tensors() | |
input_details = interpreter.get_input_details() | |
output_details = interpreter.get_output_details() | |
print(output_details) | |
height = input_details[0]['shape'][1] | |
width = input_details[0]['shape'][2] | |
floating_model = False | |
if input_details[0]['dtype'] == np.float32: | |
floating_model = True | |
rgb = cv2.cvtColor(image, cv2.COLOR_GRAY2RGB) | |
initial_h, initial_w, channels = rgb.shape | |
picture = cv2.resize(rgb, (width, height)) | |
input_data = np.expand_dims(picture, axis=0) | |
if floating_model: | |
input_data = (np.float32(input_data) - 127.5) / 127.5 | |
interpreter.set_tensor(input_details[0]['index'], input_data) | |
interpreter.invoke() | |
detected_boxes = interpreter.get_tensor(output_details[0]['index']) | |
detected_classes = interpreter.get_tensor(output_details[1]['index']) | |
detected_scores = interpreter.get_tensor(output_details[2]['index']) | |
num_boxes = interpreter.get_tensor(output_details[3]['index']) | |
rectangles = [] | |
for i in range(int(num_boxes)): | |
top, left, bottom, right = detected_boxes[0][i] | |
classId = int(detected_classes[0][i]) | |
score = detected_scores[0][i] | |
if score > 0.5: | |
xmin = left * initial_w | |
ymin = bottom * initial_h | |
xmax = right * initial_w | |
ymax = top * initial_h | |
box = [xmin, ymin, xmax, ymax] | |
rectangles.append(box) | |
if labels: | |
print(labels[classId], 'score = ', score) | |
rectangles[-1].append(labels[classId]) | |
else: | |
print('score = ', score) | |
def main(): | |
parser = argparse.ArgumentParser() | |
parser.add_argument('--model', help='Path of the detection model.', required=True) | |
parser.add_argument('--label', help='Path of the labels file.') | |
parser.add_argument('--output', help='File path of the output image.') | |
args = parser.parse_args() | |
if (args.output): | |
output_file = args.output | |
else: | |
output_file = 'out.jpg' | |
if (args.label): | |
label_file = args.label | |
else: | |
label_file = None | |
picam2 = Picamera2() | |
picam2.set_controls({"AfTrigger":controls.AfModeEnum.Auto}) | |
picam2.start_preview(Preview.QTGL) | |
config = picam2.create_preview_configuration(main={"size": normalSize}, | |
lores={"size": lowresSize, "format": "YUV420"}) | |
picam2.configure(config) | |
stride = picam2.stream_configuration("lores")["stride"] | |
picam2.post_callback = DrawRectangles | |
picam2.start() | |
while True: | |
success = picam2.autofocus_cycle() | |
buffer = picam2.capture_buffer("lores") | |
grey = buffer[:stride * lowresSize[1]].reshape((lowresSize[1], stride)) | |
_ = InferenceTensorFlow(grey, args.model, output_file, label_file) | |
if __name__ == '__main__': | |
main() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment