Skip to content

Instantly share code, notes, and snippets.

@benfasoli
Last active May 13, 2020 17:58
Show Gist options
  • Save benfasoli/b450a6d523e2d8995b68d63a55df3d07 to your computer and use it in GitHub Desktop.
Save benfasoli/b450a6d523e2d8995b68d63a55df3d07 to your computer and use it in GitHub Desktop.
#!/usr/bin/env Rscript
library(raster)
library(tidyverse)
# Time integrate footprints to a single layer
r0 <- sum(brick('footprint0.nc'))
r1 <- sum(brick('footprint1.nc'))
control <- values(r0)
interpolated <- values(r1)
r_squared <- cor(control, interpolated) ^ 2
message('r squared: ', signif(r_squared, 4))
# Define error as i - c
e <- interpolated - control
rmse <- function(x) sqrt(mean(x^2))
# Calculate rmse using all cells
base_rmse <- rmse(e)
# Estimate rmse excluding each individual cell
rm_rmse <- array(0, length(e))
for (i in 1:length(e)) {
rm_rmse[i] <- rmse(e[-i])
}
# Aggregate footprint magnitude and rmse after cell exclusion
df <- data.frame(foot=control, rm_rmse=rm_rmse) %>%
arrange(desc(foot)) %>%
mutate(idx = 1:n(),
drmse = rm_rmse - base_rmse)
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment