Last active
May 1, 2019 13:53
-
-
Save benman1/0424365833d46faac82ad625650d4926 to your computer and use it in GitHub Desktop.
mini bert transformation
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from tensorflow.python.keras.layers import ZeroPadding1D, Concatenate, Reshape, TimeDistributed, LSTM, Dropout, Masking, Cropping1D | |
from tensorflow.python.keras.regularizers import l1 | |
reg = l1(10e-5) | |
def mini_bert_block( | |
input_layer, embedding_dim=300, | |
drop_out=0.5, sequence_length=800, context_width=3, | |
): | |
if (context_width % 2) == 0: | |
raise ValueError( | |
'Please provide an uneven number for the context!' | |
) | |
paddings = [] | |
for i in range(context_width): | |
paddings.append( | |
ZeroPadding1D((i, context_width-1-i))(input_layer) | |
) | |
concat = Concatenate(axis=-1)(paddings) | |
reshape = Reshape( | |
(sequence_length + context_width - 1, context_width, embedding_dim) | |
)(concat) | |
#masked = Masking(mask_value=0.0)(reshape) | |
normed = BatchNormalization(axis=-1)(reshape) | |
recurrent = TimeDistributed( | |
CuDNNGRU( # optionally use a Bidirectional here | |
units=embedding_dim, | |
#activation='relu', | |
return_sequences=False, | |
#use_bias=True, | |
activity_regularizer=reg, | |
) | |
)(normed) | |
crop = (context_width - 1) // 2 | |
sliced = Cropping1D((crop, crop))(recurrent) | |
return Dropout(drop_out)(sliced) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment