- 
      
 - 
        
Save benmarwick/2052248 to your computer and use it in GitHub Desktop.  
  
    
      This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
      Learn more about bidirectional Unicode characters
    
  
  
    
  | ks.default <- function(rows) seq(2, max(3, rows %/% 4)) | |
| many_kmeans <- function(x, ks = ks.default(nrow(x)), ...) { | |
| ldply(seq_along(ks), function(i) { | |
| cl <- kmeans(x, centers = ks[i], ...) | |
| data.frame(obs = seq_len(nrow(x)), i = i, k = ks[i], cluster = cl$cluster) | |
| }) | |
| } | |
| all_hclust <- function(x, ks = ks.default(nrow(x)), point.dist = "euclidean", cluster.dist = "ward") { | |
| d <- dist(x, method = point.dist) | |
| cl <- hclust(d, method = cluster.dist) | |
| ldply(seq_along(ks), function(i) { | |
| data.frame( | |
| obs = seq_len(nrow(x)), i = i, k = ks[i], | |
| cluster = cutree(cl, ks[i]) | |
| ) | |
| }) | |
| } | |
| center <- function(x) x - mean(range(x)) | |
| #' @param clusters data frame giving cluster assignments as produced by | |
| #' many_kmeans or all_hclust | |
| #' @param y value to plot on the y-axis. Should be length | |
| #' \code{max(clusters$obs)} | |
| clustergram <- function(clusters, y, line.width = NULL) { | |
| clusters$y <- y[clusters$obs] | |
| clusters$center <- ave(clusters$y, clusters$i, clusters$cluster) | |
| if (is.null(line.width)) { | |
| line.width <- 0.5 * diff(range(clusters$center, na.rm = TRUE)) / | |
| length(unique(clusters$obs)) | |
| } | |
| clusters$line.width <- line.width | |
| # Adjust center positions so that they don't overlap | |
| clusters <- clusters[with(clusters, order(i, center, y, obs)), ] | |
| clusters <- ddply(clusters, c("i", "cluster"), transform, | |
| adj = center + (line.width * center(seq_along(y))) | |
| ) | |
| structure(clusters, | |
| class = c("clustergram", class(clusters)), | |
| line.width = line.width) | |
| } | |
| plot.clustergram <- function(x) { | |
| i_pos <- !duplicated(x$i) | |
| means <- ddply(x, c("cluster", "i"), summarise, | |
| min = min(adj), max = max(adj)) | |
| ggplot(x, aes(i)) + | |
| geom_ribbon(aes(y = adj, group = obs, fill = y, ymin = adj - line.width/2, ymax = adj + line.width/2, colour = y)) + | |
| geom_errorbar(aes(ymin = min, ymax = max), data = means, width = 0.1) + | |
| scale_x_continuous("cluster", breaks = x$i[i_pos], labels = x$k[i_pos]) + | |
| labs(y = "Cluster average", colour = "Obs\nvalue", fill = "Obs\nvalue") | |
| } | 
  
    
      This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
      Learn more about bidirectional Unicode characters
    
  
  
    
  | iris_s <- scale(iris[,-5]) | |
| k_def <- many_kmeans(iris_s) | |
| k_10 <- many_kmeans(iris_s, 2:10) | |
| k_rep <- many_kmeans(iris_s, rep(4, 5)) | |
| h_def <- all_hclust(iris_s) | |
| h_10 <- all_hclust(iris_s, 2:10) | |
| h_5 <- all_hclust(iris_s, seq(2, 20, by = 4)) | |
| pr <- princomp(iris_s) | |
| pr1 <- predict(pr)[, 1] | |
| pr2 <- predict(pr)[, 2] | |
| plot(clustergram(k_def, pr1)) | |
| plot(clustergram(k_rep, pr1)) | |
| plot(clustergram(k_rep, pr2)) | 
  
    Sign up for free
    to join this conversation on GitHub.
    Already have an account?
    Sign in to comment