Created
May 17, 2020 06:27
-
-
Save bennyistanto/1a691954c68d1bc11d2fb1c4f2df2b6d to your computer and use it in GitHub Desktop.
Pixel-wise regression between two raster time-series
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
##### | |
# Installing packages | |
install.packages(c('raster','readr','tidyr','dplyr','RColorBrewer','GISTools','sp', | |
'sf','ggplot2','bioimagetools','plyr',"orcutt","lmtest"), dependencies = T) | |
library(raster) | |
library(readr) | |
library(tidyr) | |
library(dplyr) | |
library(RColorBrewer) | |
library(GISTools) | |
library(sp) | |
library(sf) | |
library(ggplot2) | |
library(bioimagetools) | |
library(plyr) | |
library(orcutt) | |
library(lmtest) | |
library(readxl) | |
##### | |
# Define stacks in my folder | |
getwd() | |
setwd('C:/Users/anggita.annisa/Documents/Anggita/Assignment 1/Pixel-wise Regression') | |
rainanom_ <- paste0('./tls_rainanom/rainanom_',0:443,".tif") | |
rainanom <- stack(rainanom_) | |
sstanom_ <- paste0('./tls_sstanom/sstanom_',0:443,".tif") | |
sstanom <- stack(sstanom_) | |
s <- stack(rainanom, sstanom) | |
a <- length(rainanom_) | |
b <- length(sstanom_) | |
##### | |
# Slope Function | |
## Linear Model for Time-Series Data | |
fun=function(x) { if (is.na(x[1])){ NA } else { cochrane.orcutt(lm(x[1:a] ~ x[(1+a):(a+b)]))$coefficients[2] }} | |
slope <- calc(s, fun) | |
# Saving Slope into geotiff | |
writeRaster(slope, filename = 'tls_slope_rainanom.tif') | |
# Open the geotiff file slope | |
slope <- raster('./tls_slope_rainanom.tif') | |
# Slope Visualization | |
par(mar=c(1,1,1,1)) | |
plot(slope, col = c(rgb(112/255,23/255,29/255), | |
rgb(213/255,72/255,47/255), | |
rgb(237/255,145/255,79/255), | |
rgb(248/255,203/255,111/255), | |
rgb(255/255,253/255,187/255), | |
rgb(204/255,204/255,204/255)), | |
asp = 1, | |
box = F, | |
ylab = NA, | |
xlab = NA, | |
axes = F, | |
legend = F) | |
legend(x = 'topleft', | |
legend = c('-10 to 0','-20 to -10','-30 to -20','-40 to -30','-50 to -40','< -50'), | |
fill = c(rgb(204/255,204/255,204/255), | |
rgb(255/255,253/255,187/255), | |
rgb(248/255,203/255,111/255), | |
rgb(237/255,145/255,79/255), | |
rgb(213/255,72/255,47/255), | |
rgb(112/255,23/255,29/255)), | |
bty = 'n') | |
##### | |
# P-Value of the Slope | |
fun1=function(x) { if (is.na(x[1])){ NA } else { cochrane.orcutt(lm(x[1:a] ~ x[(1+a):(a+b)]))$DW[4] }} | |
pval <- calc(s, fun1) | |
plot(pval) | |
##### | |
# Gridcorts Function | |
gridcorts <- function(rasterstack, method, type=c("corel","pval","both")){ | |
# Values for (layers, ncell, ncol, nrow, method, crs, extent) come straight from the input raster stack | |
# e.g. nlayers(rasterstack), ncell(rasterstack)... etc. | |
print(paste("Start Gridcorts:",Sys.time())) | |
print("Loading parameters") | |
layers=nlayers(rasterstack);ncell=ncell(rasterstack); | |
ncol=ncol(rasterstack);nrow=nrow(rasterstack);crs=crs(rasterstack); | |
extent=extent(rasterstack);pb = txtProgressBar(min = 0, max = ncell, initial = 0) | |
print("Done loading parameters") | |
mtrx <- as.matrix(rasterstack,ncol=layers) | |
empt <- matrix(nrow=ncell, ncol=2) | |
print("Initiating loop operation") | |
if (type == "corel"){ | |
for (i in 1:ncell){ | |
setTxtProgressBar(pb,i) | |
if (all(is.na(mtrx[i,1:(layers/2)])) | all(is.na(mtrx[i,((layers/2)+1):layers]))){ | |
empt[i,1] <- NA | |
} else | |
if (sum(!is.na(mtrx[i,1:(layers/2)]/mtrx[i,((layers/2)+1):layers])) < 4 ){ | |
empt[i,1] <- NA | |
} else | |
empt[i,1] <- as.numeric(cor.test(mtrx[i,1:(layers/2)], mtrx[i,((layers/2)+1):layers],method=method)$estimate) | |
} | |
print("Creating empty raster") | |
corel <- raster(nrows=nrow,ncols=ncol,crs=crs) | |
extent(corel) <- extent | |
print("Populating correlation raster") | |
values(corel) <- empt[,1] | |
print(paste("Ending Gridcorts on",Sys.time())) | |
corel | |
} | |
else | |
if (type == "pval"){ | |
for (i in 1:ncell){ | |
setTxtProgressBar(pb,i) | |
if (all(is.na(mtrx[i,1:(layers/2)])) | all(is.na(mtrx[i,((layers/2)+1):layers]))){ | |
empt[i,2] <- NA | |
} else | |
if (sum(!is.na(mtrx[i,1:(layers/2)]/mtrx[i,((layers/2)+1):layers])) < 4 ){ | |
empt[i,2] <- NA | |
} else | |
empt[i,2] <- as.numeric(cor.test(mtrx[i,1:(layers/2)], mtrx[i,((layers/2)+1):layers],method=method)$p.value) | |
} | |
pval <- raster(nrows=nrow,ncols=ncol,crs=crs) | |
extent(pval) <- extent | |
print("Populating significance raster") | |
values(pval) <- empt[,2] | |
print(paste("Ending Gridcorts on",Sys.time())) | |
pval | |
} | |
else | |
if (type == "both"){ | |
for (i in 1:ncell){ | |
setTxtProgressBar(pb,i) | |
if (all(is.na(mtrx[i,1:(layers/2)])) | all(is.na(mtrx[i,((layers/2)+1):layers]))){ | |
empt[i,] <- NA | |
} else | |
if (sum(!is.na(mtrx[i,1:(layers/2)]/mtrx[i,((layers/2)+1):layers])) < 4 ){ | |
empt[i,] <- NA | |
} else { | |
empt[i,1] <- as.numeric(cor.test(mtrx[i,1:(layers/2)], mtrx[i,((layers/2)+1):layers],method=method)$estimate) | |
empt[i,2] <- as.numeric(cor.test(mtrx[i,1:(layers/2)], mtrx[i,((layers/2)+1):layers],method=method)$p.value) | |
} | |
} | |
c <- raster(nrows=nrow,ncols=ncol,crs=crs) | |
p <- raster(nrows=nrow,ncols=ncol,crs=crs) | |
print("Populating raster brick") | |
values(c) <- empt[,1] | |
values(p) <- empt[,2] | |
brk <- brick(c,p) | |
extent(brk) <- extent | |
names(brk) <- c("Correlation","Pvalue") | |
print(paste("Ending Gridcorts on",Sys.time())) | |
brk | |
} | |
} | |
##### | |
# Correlation | |
correlation <- gridcorts(rasterstack = s, method = "pearson", type = "corel") | |
# Saving Correlation into geotiff | |
writeRaster(correlation, filename = 'tls_corr_rainanom.tif') | |
# Open the geotiff file slope | |
correlation <- raster('./timor_leste_corr_rainanom.tif') | |
# Correlation Visualization | |
par(mar=c(1,1,1,1)) | |
plot(-correlation,breaks = c(0.18,0.23,0.26,0.3,0.35), | |
col = brewer.pal(5,'Reds'), | |
asp = 1, | |
box = F, | |
ylab = NA, | |
xlab = NA, | |
axes = F, | |
legend = F) | |
legend(x = 'topleft', | |
legend = c('< 0.2','0.2 to 0.23','0.23 to 0.26','0.26 to 0.3','> 0.3'), | |
fill = brewer.pal(5,'Reds'), | |
bty = 'n') |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Hi Benny. Thank you so much for sharing this code. I have one quick question. Is the plot displaying the correlations (negative and positive) opposite to the correlation results in the main script? Is that why you are using negative sign in line 174:
plot(-correlation)?