Last active
September 25, 2018 20:29
-
-
Save benoitdescamps/a22b687edd1c45e6a37fd5bf08251034 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
class AddSign(optimizer.Optimizer): | |
"""Implementation of AddSign. | |
See [Bello et. al., 2017](https://arxiv.org/abs/1709.07417) | |
@@__init__ | |
""" | |
def __init__(self, learning_rate=1.001,alpha=0.01,beta=0.5, use_locking=False, name="AddSign"): | |
super(AddSign, self).__init__(use_locking, name) | |
self._lr = learning_rate | |
self._alpha = alpha | |
self._beta = beta | |
# Tensor versions of the constructor arguments, created in _prepare(). | |
self._lr_t = None | |
self._alpha_t = None | |
self._beta_t = None | |
def _prepare(self): | |
self._lr_t = ops.convert_to_tensor(self._lr, name="learning_rate") | |
self._alpha_t = ops.convert_to_tensor(self._beta, name="beta_t") | |
self._beta_t = ops.convert_to_tensor(self._beta, name="beta_t") | |
def _create_slots(self, var_list): | |
# Create slots for the first and second moments. | |
for v in var_list: | |
self._zeros_slot(v, "m", self._name) | |
def _apply_dense(self, grad, var): | |
lr_t = math_ops.cast(self._lr_t, var.dtype.base_dtype) | |
beta_t = math_ops.cast(self._beta_t, var.dtype.base_dtype) | |
alpha_t = math_ops.cast(self._alpha_t, var.dtype.base_dtype) | |
eps = 1e-7 #cap for moving average | |
m = self.get_slot(var, "m") | |
m_t = m.assign(tf.maximum(beta_t * m + eps, tf.abs(grad))) | |
var_update = state_ops.assign_sub(var, lr_t*grad*(1.0+alpha_t*tf.sign(grad)*tf.sign(m_t) ) ) | |
#Create an op that groups multiple operations | |
#When this op finishes, all ops in input have finished | |
return control_flow_ops.group(*[var_update, m_t]) | |
def _apply_sparse(self, grad, var): | |
raise NotImplementedError("Sparse gradient updates are not supported.") |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment