Created
October 28, 2018 11:42
-
-
Save benoitdescamps/ecc340b0cab3b291e70980685f679ab0 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
def map_fun(args, ctx): | |
try: | |
import tensorflow as tf | |
#utils | |
from datetime import datetime | |
import time | |
import logging | |
import numpy as np | |
logger = logging.getLogger() | |
tf.logging.set_verbosity(tf.logging.DEBUG) | |
worker_num = ctx.worker_num | |
job_name = ctx.job_name | |
task_index = ctx.task_index | |
cluster, server = ctx.start_cluster_server(1) | |
#TFNode.start_cluster_server(ctx) | |
def get_next_batch(batch): | |
batch = np.array(batch) | |
data = batch[:,2:-1].reshape((batch.shape[0],timesteps,num_features)) | |
labels = batch[:,-1].astype(int) | |
return data,to_categorical(labels,num_classes=num_classes) | |
if job_name == "ps": | |
server.join() | |
elif job_name == "worker": | |
#https://www.tensorflow.org/api_docs/python/tf/train/Supervisor | |
#one task should be identified as chief. This is necessary to handle for exmaple initialization | |
is_chiefing = (task_index == 0) | |
with tf.device(tf.train.replica_device_setter( | |
worker_device="/job:worker/task:%d" % task_index, | |
cluster=cluster)): | |
def build_model(): | |
pass | |
model_input,\ | |
model_labels,\ | |
model_output,\ | |
tf_global_step,\ | |
tf_loss,\ | |
tf_optimizer,\ | |
tf_metrics = build_model() | |
hooks=[tf.train.StepCounterHook()] | |
with tf.train.MonitoredTrainingSession(master=server.target,\ | |
is_chief=is_chiefing, | |
checkpoint_dir=arsg['save_dir'],\ | |
hooks=hooks,\ | |
save_checkpoint_secs=600.) as mon_sess: | |
start_time = datetime.now() | |
tf.logging.info("{0} session ready".format(start_time.isoformat())) | |
#https://github.com/yahoo/TensorFlowOnSpark/blob/master/tensorflowonspark/TFSparkNode.py | |
# see TFNODE https://github.com/yahoo/TensorFlowOnSpark/blob/master/tensorflowonspark/TFNode.py | |
tf_feed = ctx.get_data_feed(train_mode=True) | |
step = 0 | |
while not mon_sess.should_stop() and not tf_feed.should_stop() and step < args['steps']: | |
batch_data, batch_labels = get_next_batch(tf_feed.next_batch(args['batch_size'])) | |
if len(batch_data) > 0: | |
feed = {model_input: batch_data, model_labels: batch_labels} | |
_, logloss, step = mon_sess.run([tf_optimizer, tf_loss,tf_global_step],feed_dict=feed) | |
if mon_sess.should_stop() or step >= args['steps']: | |
tf_feed.terminate() | |
logger.info("{0} stopping supervisor".format(datetime.now().isoformat())) | |
except Exception as e: | |
logger.error(e) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment