Last active
August 8, 2019 04:08
-
-
Save bens/0b4198b25887ad7ced42d18d435ef21e to your computer and use it in GitHub Desktop.
Untyped Lambda Calculus with de Bruijn indices in Maude
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
fmod LAMBDA is pr NAT . pr QID . | |
*** User-level lambda expressions, using named binders. | |
sorts Expr EName . | |
subsort Nat EName < Expr . | |
subsort Qid < EName . | |
op __ : Expr Expr -> Expr [ctor] . | |
op [\_._] : EName Expr -> Expr [ctor] . | |
op let_:=_in_ : EName Expr Expr -> Expr . | |
eq let X := A in B = [\ X . B ] A . | |
vars X Y : EName . | |
vars Q Q' : Qid . | |
var N : Nat . | |
vars A B : Expr . | |
vars C C' D D' : DeBruijn . | |
var Sc : Scope . | |
*** To keep a list of the variable names in scope, innermost at the head. | |
sort Scope . | |
op empty : -> Scope [ctor] . | |
op __ : Scope EName -> Scope [ctor] . | |
op idx : EName Scope ~> Nat . | |
eq idx(X, Sc) = idx#(0, X, Sc) . | |
op idx# : Nat EName Scope ~> Nat . | |
eq idx#(N, X, Sc X) = N . | |
ceq idx#(N, X, Sc Y) = idx#(s N, X, Sc) if X =/= Y . | |
*** A nameless lambda representation which uses the distance from the | |
*** variable to the binding lambda. | |
sorts DeBruijn DName . | |
subsort Nat DName < DeBruijn . | |
op f : Qid -> DName [ctor] . *** Free variables | |
op b : Nat -> DName [ctor] . *** Bound variables | |
op d[__] : DeBruijn DeBruijn -> DeBruijn [ctor] . | |
op d[\._] : DeBruijn -> DeBruijn [ctor] . | |
*** Convert named variable expressions to nameless. | |
op debruijn : Expr -> DeBruijn . | |
eq debruijn(A) = debruijn#(empty, A) . | |
op debruijn# : Scope Expr -> DeBruijn . | |
eq debruijn#(Sc, N) = N . | |
ceq debruijn#(Sc, X) = b(N) if N := idx(X, Sc) . | |
eq debruijn#(Sc, X) = f(X) [owise] . | |
eq debruijn#(Sc, A B) = d[debruijn#(Sc, A) debruijn#(Sc, B)] . | |
eq debruijn#(Sc, [\ X . A]) = d[\. debruijn#(Sc X, A)] . | |
*** Bindings defined outside of the reducing expression (named identifiers). | |
sort FreeCtx . | |
op none : -> FreeCtx [ctor] . | |
op _as_ : Qid DeBruijn -> FreeCtx [ctor] . | |
op _;_ : FreeCtx FreeCtx -> FreeCtx [ctor comm assoc id: none] . | |
*** Bindings introduced from lambdas in the expression. | |
sort BoundCtx . subsort DeBruijn < BoundCtx . | |
op none : -> BoundCtx [ctor] . | |
op _;_ : BoundCtx BoundCtx -> BoundCtx [ctor assoc id: none] . | |
*** Do beta substitution to reduce a nameless expression to its normal form. | |
var Free : FreeCtx . var Bound : BoundCtx . | |
op _|=_ : FreeCtx Expr ~> DeBruijn . | |
eq Free |= A = eval#(Free, none, debruijn(A)) . | |
op eval# : FreeCtx BoundCtx DeBruijn ~> DeBruijn . | |
eq eval#(Free, Bound, N) = N . | |
eq eval#(Free, Bound, d[\. C]) = d[\. C] . | |
eq eval#(Free, Bound ; C, b( 0)) = eval#(Free, Bound ; C, C) . | |
eq eval#(Free, Bound ; C, b(s N)) = eval#(Free, Bound, b(N)) . | |
eq eval#(Free ; Q as C, Bound, f( Q)) = eval#(Free ; Q as C, Bound, C) . | |
eq eval#(Free, Bound, f( Q)) = Q [owise] . | |
ceq eval#(Free, Bound, d[C D]) = eval#(Free, Bound ; D', C') | |
if d[\. C'] := eval#(Free, Bound, C) /\ D' := eval#(Free, Bound, D) . | |
endfm |
Author
bens
commented
Aug 8, 2019
•
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment