Created
April 26, 2017 16:41
-
-
Save bentona/27eb812b3a7b3697017ff55880c9f631 to your computer and use it in GitHub Desktop.
Linear Regression Carbon Five Summit
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
%matplotlib nbagg | |
from scipy import stats | |
import numpy as np | |
import matplotlib.pyplot as plt | |
from matplotlib import collections as mc | |
x = [2000, 2001, 2007, 2008, 2013, 2014, 2015, 2016] | |
y = [5, 8, 14, 18, 38, 46, 63, 72] | |
slope, intercept, r_value, p_value, std_err = stats.linregress(x,y) | |
np_x = np.array(x) | |
np_y = np.array(y) | |
z2 = np.polyfit(x, y, 2) | |
s2 = (z2[0] * (t**2)) + (z2[1] * t) + z2[2] | |
z3 = np.polyfit(x, y, 3) | |
print(z3) | |
s3 = (z3[0] * (t**3)) + (z3[1] * (t**2)) + (z3[2] * t) + z3[3] | |
lines = [[(x[i], y[i]), (x[i], slope*x[i] + intercept)] for i in range(len(x))] | |
c = np.array([(1, 0, 0, 1), (0, 1, 0, 1), (0, 0, 1, 1)]) | |
lc = mc.LineCollection(lines, colors=(1,0,0))#, linewidths=2) | |
ax = plt.axes() | |
#ax.add_collection(lc) | |
t = np.arange(2000, 2025, 1) | |
s = slope*t + intercept | |
#plt.plot(t, s) | |
plt.plot(t, s2) | |
#plt.plot(t, s3) | |
plt.plot(x, y, 'ro') | |
plt.xlabel('Year') | |
plt.ylabel('Carbon Five employee count') | |
plt.title('Carbon Five Employee Growth Over Time') | |
plt.grid(True) | |
plt.show() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment