Created
August 25, 2012 12:17
-
-
Save berak/3464792 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#include <stdlib.h> | |
#include <pcl/io/pcd_io.h> | |
#include <pcl/point_types.h> | |
#include <pcl/registration/icp.h> | |
#include <pcl/visualization/cloud_viewer.h> | |
void viewerOneOff( pcl::visualization::PCLVisualizer& viewer ) | |
{ | |
//viewer.setBackgroundColor (0.1, 0.1, 0.35); | |
viewer.setPointCloudRenderingProperties (pcl::visualization::PCL_VISUALIZER_POINT_SIZE, 2,"cloud_final"); | |
//viewer.setPointCloudRenderingProperties (pcl::visualization::PCL_VISUALIZER_POINT_SIZE, 2,"cloud_in"); | |
//viewer.setPointCloudRenderingProperties (pcl::visualization::PCL_VISUALIZER_POINT_SIZE, 2,"cloud_out"); | |
} | |
// | |
// prog.exe numpoints divisor_for_partial_match pcd_file | |
// | |
int main (int argc, char** argv) | |
{ | |
pcl::PointCloud<pcl::PointXYZRGB>::Ptr cloud_in (new pcl::PointCloud<pcl::PointXYZRGB>); | |
pcl::PointCloud<pcl::PointXYZRGB>::Ptr cloud_out (new pcl::PointCloud<pcl::PointXYZRGB>); | |
pcl::PointCloud<pcl::PointXYZRGB>::Ptr cloud_final( new pcl::PointCloud<pcl::PointXYZRGB> ); | |
pcl::PointCloud<pcl::PointXYZRGB>::Ptr result( new pcl::PointCloud<pcl::PointXYZRGB> ); | |
if ( argc>3 ) | |
{ | |
if (pcl::io::loadPCDFile<pcl::PointXYZRGB>(argv[3], *cloud_in) == -1) | |
{ | |
PCL_ERROR ("Couldn't read file test_pcd.pcd \n"); | |
return (-1); | |
} | |
} else { | |
// Fill in the CloudIn data | |
cloud_in->width = argc>1 ? atoi(argv[1]) : 1000; | |
cloud_in->height = 1; | |
cloud_in->is_dense = false; | |
cloud_in->points.resize (cloud_in->width * cloud_in->height); | |
for (size_t i = 0; i < cloud_in->points.size (); ++i) | |
{ | |
cloud_in->points[i].x = 1024 * rand () / (RAND_MAX + 1.0f); | |
cloud_in->points[i].y = 1024 * rand () / (RAND_MAX + 1.0f); | |
cloud_in->points[i].z = 1024 * rand () / (RAND_MAX + 1.0f); | |
cloud_in->points[i].b = 255; | |
} | |
} | |
for (size_t i = 0; i < 10; ++i) | |
std::cout << " " << cloud_in->points[i].x << " " << | |
cloud_in->points[i].y << " " << cloud_in->points[i].z << std::endl; | |
cloud_out->width = cloud_in->width / (argc>2 ? atoi(argv[2]) : 1) ; | |
cloud_out->height = 1; | |
cloud_out->is_dense = false; | |
cloud_out->points.resize (cloud_out->width * cloud_out->height); | |
std::cout << "Saved " << cloud_out->points.size () << " data points to input:" | |
<< std::endl; | |
//for (size_t i = 0; i < cloud_in->points.size (); ++i) std::cout << " " << | |
// cloud_in->points[i].x << " " << cloud_in->points[i].y << " " << | |
// cloud_in->points[i].z << std::endl; | |
std::cout << "size:" << cloud_out->points.size() << std::endl; | |
for (size_t i = 0; i < cloud_out->points.size(); ++i) { | |
cloud_out->points[i].x = cloud_in->points[i].x + 0.7f; | |
cloud_out->points[i].y = cloud_in->points[i].y + 0.7f; | |
cloud_out->points[i].z = cloud_in->points[i].z + 0.7f; | |
cloud_out->points[i].r = 255; | |
} | |
std::cout << "Transformed " << cloud_out->points.size () << " data points:" | |
<< std::endl; | |
for (size_t i = 0; i < 10; ++i) | |
std::cout << " " << cloud_out->points[i].x << " " << | |
cloud_out->points[i].y << " " << cloud_out->points[i].z << std::endl; | |
pcl::IterativeClosestPoint<pcl::PointXYZRGB, pcl::PointXYZRGB> icp; | |
icp.setInputCloud(cloud_in); | |
icp.setInputTarget(cloud_out); | |
icp.align(*cloud_final); | |
std::cout << "has converged:" << icp.hasConverged() << " score: " << | |
icp.getFitnessScore() << std::endl; | |
std::cout << icp.getFinalTransformation() << std::endl; | |
for (size_t i = 0; i < cloud_final->points.size(); ++i) { | |
cloud_final->points[i].g = 255; | |
cloud_final->points[i].r = 0; | |
cloud_final->points[i].b = 0; | |
if ( i < 100 ) | |
std::cout << cloud_final->points[i].x << " " << cloud_final->points[i].y << " " << cloud_final->points[i].z << std::endl; | |
} | |
std::cout << "Final " << cloud_final->points.size () << " " << cloud_final->width << cloud_final->height << std::endl; | |
for (size_t i = 0; i < cloud_in->points.size(); ++i) { | |
cloud_final->points.push_back( cloud_in->points[i] ); | |
cloud_final->width ++; | |
} | |
for (size_t i = 0; i < cloud_out->points.size(); ++i) { | |
cloud_final->points.push_back( cloud_out->points[i] ); | |
cloud_final->width ++; | |
} | |
std::cout << "Final " << cloud_final->points.size () << " " << cloud_final->width << cloud_final->height << std::endl; | |
//for (size_t i = 0; i < cloud_in->points.size (); ++i) std::cout << " " << | |
// cloud_in->points[i].x << " " << cloud_in->points[i].y << " " << | |
// cloud_in->points[i].z << std::endl; | |
//result->insert( result->begin(), cloud_in->begin(), cloud_in->end() ); | |
//result->insert( result->begin(), cloud_out->begin(), cloud_in->end() ); | |
//result->insert( result->begin(), cloud_final->begin(), cloud_final->end() ); | |
pcl::visualization::CloudViewer viewer ("reconstruction"); | |
viewer.runOnVisualizationThreadOnce (viewerOneOff); | |
//viewer.runOnVisualizationThread(viewerOnFrame); | |
viewer.showCloud (cloud_final, "cloud_final" ); | |
//viewer.showCloud (cloud_out, "cloud_out" ); | |
//viewer.showCloud (cloud_in, "cloud_in" ); | |
while (!viewer.wasStopped ()) | |
{ | |
} | |
return (0); | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment