Last active
March 24, 2021 11:19
-
-
Save berak/817fced8a6747fba71fce44fb9825c41 to your computer and use it in GitHub Desktop.
landmarks from speech audio
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# i ran this on colab to convert the pth to onnx, so opencv can read it ! | |
import torch; | |
import torch.nn as nn | |
import torch.nn.functional as F | |
class SPCH2FLM(nn.Module): | |
def __init__(self, numFilters=64, filterWidth=21): | |
super(SPCH2FLM, self).__init__() | |
self.numFilters = numFilters | |
self.filterWidth = filterWidth | |
self.conv1 = nn.Conv1d(1, self.numFilters, self.filterWidth, stride=2, padding=0, dilation=1) | |
self.conv2 = nn.Conv1d(self.numFilters, 2*self.numFilters, self.filterWidth, stride=2, padding=0, dilation=1) | |
self.conv3 = nn.Conv1d(2*self.numFilters, 4*self.numFilters, self.filterWidth, stride=2, padding=0, dilation=1) | |
self.conv4 = nn.Conv1d(4*self.numFilters, 8*self.numFilters, self.filterWidth, stride=2, padding=0, dilation=1) | |
self.fc1 = nn.Linear(62464, 6) | |
def forward(self, x): | |
h = F.dropout(F.leaky_relu(self.conv1(x), 0.3), 0.2) | |
h = F.dropout(F.leaky_relu(self.conv2(h), 0.3), 0.2) | |
h = F.dropout(F.leaky_relu(self.conv3(h), 0.3), 0.2) | |
h = F.dropout(F.leaky_relu(self.conv4(h), 0.3), 0.2) | |
features = h = h.view(h.size(0), -1) | |
h = F.leaky_relu(self.fc1(h), 0.3) | |
return h, features | |
def convert_to_onnx(net, output_name): | |
input = torch.randn(1, 1, 2240) | |
input_names = ['data'] | |
output_names = ['output'] | |
net.eval() | |
torch.onnx.export(net, input, output_name, verbose=True, input_names=input_names, output_names=output_names) | |
model = SPCH2FLM() | |
model.load_state_dict(torch.load("/content/noise_resilient_3dtface/pre_trained/1D_CNN.pt")) | |
convert_to_onnx(model, "model.onnx") | |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import base64 | |
import wave | |
import subprocess | |
import numpy as np | |
import sys | |
print("path pre",sys.path) | |
import cv2 | |
print(cv2.__version__) | |
# landmarks connections | |
cons = [[48, 49], [49, 50], [50, 51], [51, 52], [52, 53], [53, 54], [54, 55], [55, 56], [56, 57], | |
[57, 58], [58, 59], [59, 48], [60, 61], [61, 62], [62, 63], [63, 64], [64, 65], [65, 66], | |
[66, 67], [67, 60], [27, 28], [28, 29], [29, 30], [30, 31], [30, 35], [31, 32], [32, 33], | |
[33, 34], [34, 35], [27, 31], [27, 35], [17, 18], [18, 19], [19, 20], [20, 21], | |
[22, 23], [23, 24], [24, 25], [25, 26], [36, 37], [37, 38], [38, 39], [39, 40], [40, 41], | |
[36, 41], [43, 44], [44, 45], [45, 46], [46, 47], [42, 47], [0, 1], [1, 2], [2, 3], [3, 4], | |
[4, 5], [5, 6], [6, 7], [7, 8], [8, 9], [9, 10], [10, 11], [11, 12], | |
[12, 13], [13, 14], [14, 15], [15, 16]] | |
sr = 8000 # assumes: 8khz mono | |
num_frames = 7 | |
increment = sr * 0.04 # 25 fps | |
W,H = 400,400; # drawing | |
net = cv2.dnn.readNet("model.onnx") | |
mean_shape = np.load("mean_shape.npy") | |
eigen_vectors = np.load("eigen_vectors.npy").T | |
def animate(wfile): | |
w = wave.open(wfile,"rb") | |
n = w.getnframes() | |
b = w.readframes(n) | |
a = np.frombuffer(b,np.int16) | |
a = np.array(a,np.float32) | |
a /= 0x7ffff | |
a /= a.max() | |
sample_len = int(num_frames * increment) | |
sample_pos = int(0) | |
vid = cv2.VideoWriter("my.avi",cv2.VideoWriter_fourcc(*'MJPG'), 25.0, (W,H)) | |
while (sample_pos < n - sample_len): | |
data = a[int(sample_pos):int(sample_pos+sample_len)].reshape(1,1,sample_len) | |
sample_pos += increment; | |
net.setInput(data) | |
res = net.forward() | |
pts = mean_shape.copy() | |
for i in range(eigen_vectors.shape[0]): | |
pts[0,i] += res.dot(eigen_vectors[i,:]) | |
pts = pts.reshape(68,3) # 204==68*3 | |
img = np.ones((H,W,3),np.uint8) | |
img[:,:] = (127,127,127) | |
for i in range(pts.shape[0]): | |
x = int(pts[i,0] * W*2 + W/2) | |
y = int(pts[i,1] * H*2 + H/2) | |
cv2.circle(img, (x,y), 3, (50,50,255), -1) | |
for c in cons: | |
x1 = int(pts[c[0],0] * W*2 + W/2) | |
y1 = int(pts[c[0],1] * H*2 + H/2) | |
x2 = int(pts[c[1],0] * W*2 + W/2) | |
y2 = int(pts[c[1],1] * H*2 + H/2) | |
cv2.line(img,(x1,y1),(x2,y2),(20,20,180),1) | |
vid.write(img) | |
vid.release() | |
cmd = 'ffmpeg -y -i my.avi -i '+wfile+' -c:v h264 -c:a aac -strict experimental res_.mp4 > /dev/null' | |
subprocess.call(cmd, shell=True) | |
HELLO_WORLD = b""" | |
<!Doctype html> | |
<html> | |
<head> | |
<title>facial landmarks from audio</title> | |
</head> | |
<body> | |
<div id="droparea"> | |
<p> drop an audio sample (8khz, 16bit mono, wav) here or load from disk</p> | |
<p> <input type="file" accept="audio/*" capture id="recorder"></p> | |
<p> <div id="err"></div></p> | |
</div> | |
<script type="text/javascript"> | |
var recorder = document.getElementById("recorder") | |
recorder.addEventListener('change', function(e) { | |
const file = e.target.files[0]; | |
postSoundToURL("/up", file); | |
}); | |
function postSoundToURL(url, data) { // this is the actual workhorse | |
err.innerHTML = "... posting sound"; | |
var type = "audio/wav" | |
var xhr = new XMLHttpRequest(); | |
xhr.open('POST', url, true); | |
xhr.setRequestHeader('Content-Type', type); | |
xhr.onreadystatechange = function(e) { | |
err.innerHTML = "... " + this.readyState + " " + e | |
if ( this.readyState > 3 ) { | |
err.innerHTML = this.responseText; | |
} | |
} | |
var reader = new FileReader(); | |
reader.onload = function(e){ | |
res = e.target.result.replace('data:' + type + ';base64,', ''); | |
xhr.send(res); | |
}; | |
reader.readAsDataURL(data); | |
} | |
var target = document.getElementById("droparea"); | |
target.addEventListener("dragover", function(e){e.preventDefault();}, true); | |
target.addEventListener("drop", function(e){ | |
e.preventDefault(); | |
postSoundToURL("/up", e.dataTransfer.files[0]); | |
}, true); | |
</script> | |
</body> | |
</html> | |
""" | |
VIDEO = b""" | |
<html> | |
<video id="vid" width="400" height="400" controls> | |
<source src="res_.mp4" type="video/mp4"> | |
Your browser does not support the video tag. | |
</video> | |
</html> | |
""" | |
def _read(fname): | |
try: | |
f = open(fname,"rb") | |
r = f.read() | |
f.close() | |
return r | |
except: | |
return "" | |
def application(environ, start_response): | |
request_body_size=0 | |
request_body=None | |
retcode = '200 OK' | |
resp = "dummy\r\n" | |
ct ="text/html" | |
try: | |
request_body_size = int(environ.get('CONTENT_LENGTH', 0)) | |
request_body = environ['wsgi.input'].read(request_body_size) | |
except (ValueError): | |
resp = "no response" | |
url = environ['PATH_INFO']; | |
print(url,request_body_size) | |
if url == "/": | |
resp = HELLO_WORLD | |
elif url == "/res_.mp4": | |
ct = 'video/mp4' | |
resp = _read("res_.mp4") | |
elif url == "/vid": | |
resp = VIDEO | |
elif url == "/up" and request_body_size>0: | |
resp = VIDEO | |
res = request_body #.replace(b'data:' + ct + b';base64,', b"") | |
data = base64.b64decode(res) | |
f = open("S.wav","wb") | |
f.write(data) | |
f.close() | |
animate("S.wav") | |
else: | |
resp = "404 - file "+url+" not found" | |
retcode = "404 ERROR" | |
headers = [('Content-type', ct), ('Content-Length', str(len(resp)))] | |
start_response(retcode, headers) | |
return [resp] | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment