Last active
September 17, 2024 22:28
-
-
Save bertsky/d992bb9c9ac231e29e615419d9ebb319 to your computer and use it in GitHub Desktop.
Plot GPU compute and memory utilization curve
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#!/usr/bin/env bash | |
fname=$1 | |
# if the log file does not exist yet, record it (stop by pressing ctrl+c) | |
if ! test -f $fname; then | |
nvidia-smi -f $fname -l 1 --format=csv --query-gpu=timestamp,memory.total,memory.used,utilization.gpu,utilization.memory & | |
bg=$! | |
read -p "press return to stop recording $fname and start plotting to ${fname:0:${#fname}-4}.png " | |
kill -INT $bg | |
fi | |
# run actual plot script | |
python - <<"EOF" $fname | |
import matplotlib.pyplot as plt | |
import pandas as pd | |
import sys | |
fname=sys.argv[1] | |
def intdropunit(s): | |
# get rid of units (" MiB", " %") | |
return int(s.split()[0]) | |
# parse the CSV | |
with open(fname) as file: | |
log = pd.read_csv(file, | |
parse_dates=['timestamp'], | |
converters={1: intdropunit, 2: intdropunit, 3: intdropunit, 4: intdropunit} | |
) | |
# filter non-zero (i.e. non-min) rows | |
log = log[~(log.iloc[:,1:] == log.min(axis="index")[1:]).all(axis="columns")] | |
# subplot for MiB and subplot for % | |
fig, axs = plt.subplots(2, sharex=True, dpi=600) | |
log.plot('timestamp', [1, 2], ax=axs[0]) | |
log.plot('timestamp', [3, 4], ax=axs[1]) | |
fig.savefig(fname[:-4] + '.png') | |
EOF | |
ls ${fname:0:${#fname}-4}.png |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
example output:
(very low average utilisation: too small batch size and GPU waiting on CPU)