Skip to content

Instantly share code, notes, and snippets.

@betandr
Last active November 15, 2021 20:43
Show Gist options
  • Save betandr/541a1f6466b6855471de5ca30b74cb31 to your computer and use it in GitHub Desktop.
Save betandr/541a1f6466b6855471de5ca30b74cb31 to your computer and use it in GitHub Desktop.
Dijkstra's Shortest Path Algorithm in Python
from decimal import Decimal
class Node:
def __init__(self, label):
self.label = label
class Edge:
def __init__(self, to_node, length):
self.to_node = to_node
self.length = length
class Graph:
def __init__(self):
self.nodes = set()
self.edges = dict()
def add_node(self, node):
self.nodes.add(node)
def add_edge(self, from_node, to_node, length):
edge = Edge(to_node, length)
if from_node.label in self.edges:
from_node_edges = self.edges[from_node.label]
else:
self.edges[from_node.label] = dict()
from_node_edges = self.edges[from_node.label]
from_node_edges[to_node.label] = edge
def min_dist(q, dist):
"""
Returns the node with the smallest distance in q.
Implemented to keep the main algorithm clean.
"""
min_node = None
for node in q:
if min_node == None:
min_node = node
elif dist[node] < dist[min_node]:
min_node = node
return min_node
INFINITY = Decimal('Infinity')
def dijkstra(graph, source):
q = set()
dist = {}
prev = {}
for v in graph.nodes: # initialization
dist[v] = INFINITY # unknown distance from source to v
prev[v] = INFINITY # previous node in optimal path from source
q.add(v) # all nodes initially in q (unvisited nodes)
# distance from source to source
dist[source] = 0
while q:
# node with the least distance selected first
u = min_dist(q, dist)
q.remove(u)
if u.label in graph.edges:
for _, v in graph.edges[u.label].items():
alt = dist[u] + v.length
if alt < dist[v.to_node]:
# a shorter path to v has been found
dist[v.to_node] = alt
prev[v.to_node] = u
return dist, prev
def to_array(prev, from_node):
"""Creates an ordered list of labels as a route."""
previous_node = prev[from_node]
route = [from_node.label]
while previous_node != INFINITY:
route.append(previous_node.label)
temp = previous_node
previous_node = prev[temp]
route.reverse()
return route
graph = Graph()
node_a = Node("A")
graph.add_node(node_a)
node_b = Node("B")
graph.add_node(node_b)
node_c = Node("C")
graph.add_node(node_c)
node_d = Node("D")
graph.add_node(node_d)
node_e = Node("E")
graph.add_node(node_e)
node_f = Node("F")
graph.add_node(node_f)
node_g = Node("G")
graph.add_node(node_g)
graph.add_edge(node_a, node_b, 4)
graph.add_edge(node_a, node_c, 3)
graph.add_edge(node_a, node_e, 7)
graph.add_edge(node_b, node_c, 6)
graph.add_edge(node_b, node_d, 5)
graph.add_edge(node_c, node_d, 11)
graph.add_edge(node_c, node_e, 8)
graph.add_edge(node_d, node_e, 2)
graph.add_edge(node_d, node_f, 2)
graph.add_edge(node_d, node_g, 10)
graph.add_edge(node_e, node_g, 5)
graph.add_edge(node_f, node_g, 3)
dist, prev = dijkstra(graph, node_a)
print("The quickest path from {} to {} is [{}] with a distance of {}".format(
node_a.label,
node_f.label,
" -> ".join(to_array(prev, node_f)),
str(dist[node_f])
)
)
@KaleabTessera
Copy link

Thanks I adapted this and it worked!

@Kobra9891
Copy link

What is the complexity of this code

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment