Last active
November 15, 2021 20:43
-
-
Save betandr/541a1f6466b6855471de5ca30b74cb31 to your computer and use it in GitHub Desktop.
Dijkstra's Shortest Path Algorithm in Python
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from decimal import Decimal | |
class Node: | |
def __init__(self, label): | |
self.label = label | |
class Edge: | |
def __init__(self, to_node, length): | |
self.to_node = to_node | |
self.length = length | |
class Graph: | |
def __init__(self): | |
self.nodes = set() | |
self.edges = dict() | |
def add_node(self, node): | |
self.nodes.add(node) | |
def add_edge(self, from_node, to_node, length): | |
edge = Edge(to_node, length) | |
if from_node.label in self.edges: | |
from_node_edges = self.edges[from_node.label] | |
else: | |
self.edges[from_node.label] = dict() | |
from_node_edges = self.edges[from_node.label] | |
from_node_edges[to_node.label] = edge | |
def min_dist(q, dist): | |
""" | |
Returns the node with the smallest distance in q. | |
Implemented to keep the main algorithm clean. | |
""" | |
min_node = None | |
for node in q: | |
if min_node == None: | |
min_node = node | |
elif dist[node] < dist[min_node]: | |
min_node = node | |
return min_node | |
INFINITY = Decimal('Infinity') | |
def dijkstra(graph, source): | |
q = set() | |
dist = {} | |
prev = {} | |
for v in graph.nodes: # initialization | |
dist[v] = INFINITY # unknown distance from source to v | |
prev[v] = INFINITY # previous node in optimal path from source | |
q.add(v) # all nodes initially in q (unvisited nodes) | |
# distance from source to source | |
dist[source] = 0 | |
while q: | |
# node with the least distance selected first | |
u = min_dist(q, dist) | |
q.remove(u) | |
if u.label in graph.edges: | |
for _, v in graph.edges[u.label].items(): | |
alt = dist[u] + v.length | |
if alt < dist[v.to_node]: | |
# a shorter path to v has been found | |
dist[v.to_node] = alt | |
prev[v.to_node] = u | |
return dist, prev | |
def to_array(prev, from_node): | |
"""Creates an ordered list of labels as a route.""" | |
previous_node = prev[from_node] | |
route = [from_node.label] | |
while previous_node != INFINITY: | |
route.append(previous_node.label) | |
temp = previous_node | |
previous_node = prev[temp] | |
route.reverse() | |
return route | |
graph = Graph() | |
node_a = Node("A") | |
graph.add_node(node_a) | |
node_b = Node("B") | |
graph.add_node(node_b) | |
node_c = Node("C") | |
graph.add_node(node_c) | |
node_d = Node("D") | |
graph.add_node(node_d) | |
node_e = Node("E") | |
graph.add_node(node_e) | |
node_f = Node("F") | |
graph.add_node(node_f) | |
node_g = Node("G") | |
graph.add_node(node_g) | |
graph.add_edge(node_a, node_b, 4) | |
graph.add_edge(node_a, node_c, 3) | |
graph.add_edge(node_a, node_e, 7) | |
graph.add_edge(node_b, node_c, 6) | |
graph.add_edge(node_b, node_d, 5) | |
graph.add_edge(node_c, node_d, 11) | |
graph.add_edge(node_c, node_e, 8) | |
graph.add_edge(node_d, node_e, 2) | |
graph.add_edge(node_d, node_f, 2) | |
graph.add_edge(node_d, node_g, 10) | |
graph.add_edge(node_e, node_g, 5) | |
graph.add_edge(node_f, node_g, 3) | |
dist, prev = dijkstra(graph, node_a) | |
print("The quickest path from {} to {} is [{}] with a distance of {}".format( | |
node_a.label, | |
node_f.label, | |
" -> ".join(to_array(prev, node_f)), | |
str(dist[node_f]) | |
) | |
) |
What is the complexity of this code
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Thanks I adapted this and it worked!