A Python script that tracks Pull Request activity for a specific user over a configurable time period using the PyGithub library.
- Tracks PRs where the user:
- Created the PR
- Added comments
- Submitted reviews
Purpose: This checklist is optimized for AI assistants (like Cursor) to perform automated PR reviews. It separates automatable checks from those requiring human judgment, provides specific patterns to detect, and includes commands to run.
Classification Metrics Sparse Support Bug (Issue #32036): A bug where classification metrics in scikit-learn claim sparse matrix support in docstrings but raise an error when used with sparse inputs. The issue is reliably reproducible with provided code steps, expected (support) vs. actual behavior (TypeError), and environment details in the traceback. No major missing elements. Link
RandomizedSearchCV Feature Request (Issue #32032): A proposal to add weights for controlling the probability of selecting items in a list of parameter distributions, useful for complex pipelines with interdependent hyperparameters. This is a feature enhancement, not a bug, and includes clear examples and rationale. Link
CI Failure on Linux Build (Issue #32022): Reported CI failure on a specific build configuration, with a reference to logs but no detailed steps to rep
| import numpy as np | |
| import logging | |
| import time | |
| # Configure logging | |
| logging.basicConfig( | |
| level=logging.INFO, | |
| format='%(asctime)s - %(levelname)s - %(message)s', | |
| handlers=[ | |
| logging.FileHandler('calculations.log'), |
| import sklearn | |
| import numpy as np | |
| import torch | |
| sklearn.set_config(array_api_dispatch=True) | |
| def my_code(X, cdist=False): | |
| if cdist: | |
| dist = torch.cdist(X, X, p=2) |
| [215/275] Linking CXX shared library libcuml++.so | |
| FAILED: libcuml++.so | |
| : && /datasets/thead/mambaforge/envs/cuml-dev-23.12-dgx15/bin/x86_64-conda-linux-gnu-c++ -fPIC -fvisibility-inlines-hidden -fmessage-length=0 -march=nocona -mtune=haswell -ftree-vectorize -fPIC -fstack-protector-strong -fno-plt -O2 -ffunction-sections -pipe -isystem /datasets/thead/mambaforge/envs/cuml-dev-23.12-dgx15/include -I/datasets/thead/mambaforge/envs/cuml-dev-23.12-dgx15/targets/x86_64-linux/include -L/datasets/thead/mambaforge/envs/cuml-dev-23.12-dgx15/targets/x86_64-linux/lib -L/datasets/thead/mambaforge/envs/cuml-dev-23.12-dgx15/targets/x86_64-linux/lib/stubs -O3 -DNDEBUG -Wl,-O2 -Wl,--sort-common -Wl,--as-needed -Wl,-z,relro -Wl,-z,now -Wl,--disable-new-dtags -Wl,--gc-sections -Wl,--allow-shlib-undefined -Wl,-rpath,/datasets/thead/mambaforge/envs/cuml-dev-23.12-dgx15/lib -Wl,-rpath-link,/datasets/thead/mambaforge/envs/cuml-dev-23.12-dgx15/lib -L/datasets/thead/mambaforge/envs/cuml-dev-23.12-dgx15/lib -L/datasets/thead/mamb |
| conda-forge/osx-arm64 Using cache | |
| conda-forge/noarch Using cache | |
| Looking for: ['python=3.9', 'numpy=1.19.5', 'blas', 'scipy=1.6.0', 'cython=3.0.10', 'joblib', 'threadpoolctl', 'matplotlib=3.3.4', 'pandas=1.1.5', 'pyamg', "pytest[version='<8']", 'pytest-xdist', 'pillow', 'pip', 'ninja', 'meson-python', 'scikit-image=0.17.2', 'seaborn', 'memory_profiler', 'compilers', 'sphinx=6.0.0', 'sphinx-gallery=0.15.0', 'sphinx-copybutton=0.5.2', 'numpydoc=1.2.0', 'sphinx-prompt=1.3.0', 'plotly=5.14.0', 'polars=0.19.12', 'pooch', 'pip'] | |
| Could not solve for environment specs | |
| The following packages are incompatible | |
| ├─ numpy 1.19.5** is installable with the potential options |
Checkout https://github.com/rapidsai/gpu-xb-ai:
git clone https://github.com/rapidsai/gpu-xb-ai
Create a conda environment from conda/environments/gpu-xb-ai-legate-all.yaml:
conda env create -f conda/environments/gpu-xb-ai-legate-all.yaml
| ==================================================================================== short test summary info ==================================================================================== | |
| FAILED sklearn/model_selection/tests/test_split.py::test_array_api_train_test_split[True-None-cupy.array_api-None-None] - ValueError: The truth value of an array with more than one element is ambiguous. Use a.any() or a.all() | |
| FAILED sklearn/model_selection/tests/test_split.py::test_array_api_train_test_split[True-stratify1-cupy-None-None] - ValueError: kind can only be None or 'stable' | |
| FAILED sklearn/model_selection/tests/test_split.py::test_array_api_train_test_split[True-stratify1-cupy.array_api-None-None] - ValueError: The least populated class in y has only 1 member, which is too few. The minimum number of groups for any class cannot be less than 2. | |
| FAILED sklearn/model_selection/tests/test_split.py::test_array_api_train_test_split[False-None-cupy.array_api-None-None] - ValueError: The truth value of an array with |
| from dask_mpi import initialize | |
| from dask import distributed | |
| def dask_info(): | |
| distributed.print("woah i'm running!") | |
| distributed.print("ncores:", client.ncores()) | |
| distributed.print() | |
| distributed.print(client.scheduler_info()) |