A Python script that tracks Pull Request activity for a specific user over a configurable time period using the PyGithub library.
- Tracks PRs where the user:
- Created the PR
- Added comments
- Submitted reviews
| #!/usr/bin/env python3 | |
| """ | |
| Ray + RandomForestClassifier with max_calls=1 | |
| Demonstrates the impact of max_calls=1 on Ray task execution when using | |
| scikit-learn's RandomForestClassifier. | |
| """ | |
| import time | |
| import ray | |
| from sklearn.datasets import make_classification |
| """ | |
| Benchmark: scikit-learn RandomForest vs LightGBM RandomForest | |
| Compares performance across: | |
| - Number of samples (1K, 10K, 100K, 500K) | |
| - Number of features (10, 50, 200) | |
| - Feature types (numerical, categorical, mixed) | |
| - Number of classes (2, 5, 10) | |
| Includes cases optimized for LightGBM's strengths: |
| name: tabareana-20251202 | |
| channels: | |
| - conda-forge | |
| dependencies: | |
| - _libgcc_mutex=0.1=conda_forge | |
| - _openmp_mutex=4.5=2_gnu | |
| - bzip2=1.0.8=hda65f42_8 | |
| - ca-certificates=2025.11.12=hbd8a1cb_0 | |
| - cuda-cccl_linux-64=13.0.85=ha770c72_0 | |
| - cuda-cudart-dev_linux-64=13.0.96=h376f20c_0 |
| from __future__ import annotations | |
| import warnings | |
| warnings.simplefilter("error", FutureWarning) | |
| from pathlib import Path | |
| from typing import Any | |
| import pandas as pd | |
| from tabarena.benchmark.experiment import AGModelBagExperiment, ExperimentBatchRunner |
Purpose: This checklist is optimized for AI assistants (like Cursor) to perform automated PR reviews. It separates automatable checks from those requiring human judgment, provides specific patterns to detect, and includes commands to run.
Classification Metrics Sparse Support Bug (Issue #32036): A bug where classification metrics in scikit-learn claim sparse matrix support in docstrings but raise an error when used with sparse inputs. The issue is reliably reproducible with provided code steps, expected (support) vs. actual behavior (TypeError), and environment details in the traceback. No major missing elements. Link
RandomizedSearchCV Feature Request (Issue #32032): A proposal to add weights for controlling the probability of selecting items in a list of parameter distributions, useful for complex pipelines with interdependent hyperparameters. This is a feature enhancement, not a bug, and includes clear examples and rationale. Link
CI Failure on Linux Build (Issue #32022): Reported CI failure on a specific build configuration, with a reference to logs but no detailed steps to rep
| import numpy as np | |
| import logging | |
| import time | |
| # Configure logging | |
| logging.basicConfig( | |
| level=logging.INFO, | |
| format='%(asctime)s - %(levelname)s - %(message)s', | |
| handlers=[ | |
| logging.FileHandler('calculations.log'), |
| import sklearn | |
| import numpy as np | |
| import torch | |
| sklearn.set_config(array_api_dispatch=True) | |
| def my_code(X, cdist=False): | |
| if cdist: | |
| dist = torch.cdist(X, X, p=2) |
| [215/275] Linking CXX shared library libcuml++.so | |
| FAILED: libcuml++.so | |
| : && /datasets/thead/mambaforge/envs/cuml-dev-23.12-dgx15/bin/x86_64-conda-linux-gnu-c++ -fPIC -fvisibility-inlines-hidden -fmessage-length=0 -march=nocona -mtune=haswell -ftree-vectorize -fPIC -fstack-protector-strong -fno-plt -O2 -ffunction-sections -pipe -isystem /datasets/thead/mambaforge/envs/cuml-dev-23.12-dgx15/include -I/datasets/thead/mambaforge/envs/cuml-dev-23.12-dgx15/targets/x86_64-linux/include -L/datasets/thead/mambaforge/envs/cuml-dev-23.12-dgx15/targets/x86_64-linux/lib -L/datasets/thead/mambaforge/envs/cuml-dev-23.12-dgx15/targets/x86_64-linux/lib/stubs -O3 -DNDEBUG -Wl,-O2 -Wl,--sort-common -Wl,--as-needed -Wl,-z,relro -Wl,-z,now -Wl,--disable-new-dtags -Wl,--gc-sections -Wl,--allow-shlib-undefined -Wl,-rpath,/datasets/thead/mambaforge/envs/cuml-dev-23.12-dgx15/lib -Wl,-rpath-link,/datasets/thead/mambaforge/envs/cuml-dev-23.12-dgx15/lib -L/datasets/thead/mambaforge/envs/cuml-dev-23.12-dgx15/lib -L/datasets/thead/mamb |