Skip to content

Instantly share code, notes, and snippets.

@betodealmeida
Created September 23, 2020 21:52
Show Gist options
  • Save betodealmeida/0f0fd576b7229a72863b02e0dc2d70f7 to your computer and use it in GitHub Desktop.
Save betodealmeida/0f0fd576b7229a72863b02e0dc2d70f7 to your computer and use it in GitHub Desktop.
Example datasource export from Superset
- columns:
- column_name: year
is_dttm: true
type: DATETIME
- column_name: country_name
type: VARCHAR(255)
- column_name: region
type: VARCHAR(255)
- column_name: country_code
type: VARCHAR(3)
- column_name: SP_POP_0004_MA_5Y
type: FLOAT
- column_name: SP_POP_0004_FE_5Y
type: FLOAT
- column_name: SP_POP_0004_MA
type: FLOAT
- column_name: SP_POP_0004_FE
type: FLOAT
- column_name: SP_POP_0014_MA_ZS
type: FLOAT
- column_name: SP_POP_0014_FE_ZS
type: FLOAT
- column_name: SH_HIV_0014
type: FLOAT
- column_name: SP_POP_0014_TO_ZS
type: FLOAT
- column_name: SP_POP_0014_TO
type: FLOAT
- column_name: SP_POP_0509_MA_5Y
type: FLOAT
- column_name: SP_POP_0509_FE_5Y
type: FLOAT
- column_name: SP_POP_0509_MA
type: FLOAT
- column_name: SP_POP_0509_FE
type: FLOAT
- column_name: SP_POP_AG00_MA_IN
type: FLOAT
- column_name: SP_DYN_LE00_MA_IN
type: FLOAT
- column_name: SP_POP_AG00_FE_IN
type: FLOAT
- column_name: SP_DYN_LE00_FE_IN
type: FLOAT
- column_name: SP_DYN_LE00_IN
type: FLOAT
- column_name: SP_POP_1014_MA_5Y
type: FLOAT
- column_name: SP_POP_1014_FE_5Y
type: FLOAT
- column_name: SP_POP_1014_MA
type: FLOAT
- column_name: SP_POP_1014_FE
type: FLOAT
- column_name: SP_POP_AG01_MA_IN
type: FLOAT
- column_name: SP_POP_AG10_MA_IN
type: FLOAT
- column_name: SP_POP_AG01_FE_IN
type: FLOAT
- column_name: SP_POP_AG10_FE_IN
type: FLOAT
- column_name: SP_POP_2024_MA_5Y
type: FLOAT
- column_name: SP_POP_2024_FE_5Y
type: FLOAT
- column_name: SP_POP_2024_MA
type: FLOAT
- column_name: SP_POP_2024_FE
type: FLOAT
- column_name: SP_POP_AG02_MA_IN
type: FLOAT
- column_name: SP_POP_AG20_MA_IN
type: FLOAT
- column_name: SP_POP_AG02_FE_IN
type: FLOAT
- column_name: SP_POP_AG20_FE_IN
type: FLOAT
- column_name: SP_POP_3034_MA_5Y
type: FLOAT
- column_name: SP_POP_3034_FE_5Y
type: FLOAT
- column_name: SP_POP_3034_MA
type: FLOAT
- column_name: SP_POP_3034_FE
type: FLOAT
- column_name: SP_POP_AG03_MA_IN
type: FLOAT
- column_name: SP_POP_AG03_FE_IN
type: FLOAT
- column_name: SP_POP_4044_MA_5Y
type: FLOAT
- column_name: SP_POP_4044_FE_5Y
type: FLOAT
- column_name: SP_POP_4044_MA
type: FLOAT
- column_name: SP_POP_4044_FE
type: FLOAT
- column_name: SP_POP_5054_MA_5Y
type: FLOAT
- column_name: SP_POP_5054_FE_5Y
type: FLOAT
- column_name: SP_POP_5054_MA
type: FLOAT
- column_name: SP_POP_5054_FE
type: FLOAT
- column_name: SP_POP_6064_MA_5Y
type: FLOAT
- column_name: SP_POP_6064_FE_5Y
type: FLOAT
- column_name: SP_POP_7074_MA_5Y
type: FLOAT
- column_name: SP_POP_7074_FE_5Y
type: FLOAT
- column_name: SP_POP_6064_MA
type: FLOAT
- column_name: SP_POP_6064_FE
type: FLOAT
- column_name: SP_POP_7074_MA
type: FLOAT
- column_name: SP_POP_7074_FE
type: FLOAT
- column_name: SP_POP_AG04_MA_IN
type: FLOAT
- column_name: SP_POP_AG04_FE_IN
type: FLOAT
- column_name: SP_POP_80UP_MA_5Y
type: FLOAT
- column_name: SP_POP_80UP_FE_5Y
type: FLOAT
- column_name: SP_POP_AG05_MA_IN
type: FLOAT
- column_name: SP_POP_AG05_FE_IN
type: FLOAT
- column_name: SP_POP_AG06_MA_IN
type: FLOAT
- column_name: SP_POP_AG06_FE_IN
type: FLOAT
- column_name: SP_POP_AG07_MA_IN
type: FLOAT
- column_name: SP_POP_AG07_FE_IN
type: FLOAT
- column_name: SP_POP_AG08_MA_IN
type: FLOAT
- column_name: SP_POP_AG08_FE_IN
type: FLOAT
- column_name: SP_POP_80UP_MA
type: FLOAT
- column_name: SP_POP_80UP_FE
type: FLOAT
- column_name: SP_POP_AG09_MA_IN
type: FLOAT
- column_name: SP_POP_AG09_FE_IN
type: FLOAT
- column_name: SP_POP_1519_MA_5Y
type: FLOAT
- column_name: SP_POP_1519_FE_5Y
type: FLOAT
- column_name: SP_POP_1519_MA
type: FLOAT
- column_name: SP_POP_1519_FE
type: FLOAT
- column_name: SP_MTR_1519_ZS
type: FLOAT
- column_name: SP_POP_AG11_MA_IN
type: FLOAT
- column_name: SP_POP_AG11_FE_IN
type: FLOAT
- column_name: SE_ADT_1524_LT_MA_ZS
type: FLOAT
- column_name: SH_CON_1524_MA_ZS
type: FLOAT
- column_name: SE_ADT_1524_LT_FM_ZS
type: FLOAT
- column_name: SE_ADT_1524_LT_ZS
type: FLOAT
- column_name: SH_HIV_1524_KW_MA_ZS
type: FLOAT
- column_name: SH_HIV_1524_MA_ZS
type: FLOAT
- column_name: SH_CON_1524_FE_ZS
type: FLOAT
- column_name: SH_HIV_1524_KW_FE_ZS
type: FLOAT
- column_name: SH_HIV_1524_FE_ZS
type: FLOAT
- column_name: SP_POP_AG12_MA_IN
type: FLOAT
- column_name: SP_POP_AG21_MA_IN
type: FLOAT
- column_name: SP_POP_AG12_FE_IN
type: FLOAT
- column_name: SP_POP_AG21_FE_IN
type: FLOAT
- column_name: SP_POP_AG13_MA_IN
type: FLOAT
- column_name: SP_POP_AG13_FE_IN
type: FLOAT
- column_name: SP_POP_1564_MA_ZS
type: FLOAT
- column_name: SP_POP_1564_FE_ZS
type: FLOAT
- column_name: SP_POP_1564_TO_ZS
type: FLOAT
- column_name: SP_POP_1564_TO
type: FLOAT
- column_name: SP_POP_AG14_MA_IN
type: FLOAT
- column_name: SP_POP_AG14_FE_IN
type: FLOAT
- column_name: SP_POP_AG15_MA_IN
type: FLOAT
- column_name: SH_STA_OW15_MA_ZS
type: FLOAT
- column_name: SP_POP_AG15_FE_IN
type: FLOAT
- column_name: SH_STA_OW15_FE_ZS
type: FLOAT
- column_name: SH_STA_OW15_ZS
type: FLOAT
- column_name: SP_POP_AG16_MA_IN
type: FLOAT
- column_name: SP_POP_AG16_FE_IN
type: FLOAT
- column_name: SP_POP_AG17_MA_IN
type: FLOAT
- column_name: SP_POP_AG17_FE_IN
type: FLOAT
- column_name: SP_POP_AG18_MA_IN
type: FLOAT
- column_name: SP_POP_AG18_FE_IN
type: FLOAT
- column_name: SP_POP_AG19_MA_IN
type: FLOAT
- column_name: SP_POP_AG19_FE_IN
type: FLOAT
- column_name: SP_POP_2529_MA_5Y
type: FLOAT
- column_name: SP_POP_2529_FE_5Y
type: FLOAT
- column_name: SP_POP_2529_MA
type: FLOAT
- column_name: SP_POP_2529_FE
type: FLOAT
- column_name: SP_POP_AG22_MA_IN
type: FLOAT
- column_name: SP_POP_AG22_FE_IN
type: FLOAT
- column_name: SP_POP_AG23_MA_IN
type: FLOAT
- column_name: SP_POP_AG23_FE_IN
type: FLOAT
- column_name: SP_POP_AG24_MA_IN
type: FLOAT
- column_name: SP_POP_AG24_FE_IN
type: FLOAT
- column_name: SP_POP_AG25_MA_IN
type: FLOAT
- column_name: SP_POP_AG25_FE_IN
type: FLOAT
- column_name: SH_H2O_SAFE_RU_ZS
type: FLOAT
- column_name: SH_H2O_SAFE_UR_ZS
type: FLOAT
- column_name: SH_H2O_SAFE_ZS
type: FLOAT
- column_name: SH_MLR_SPF2_ZS
type: FLOAT
- column_name: SP_POP_3539_MA_5Y
type: FLOAT
- column_name: SP_POP_3539_FE_5Y
type: FLOAT
- column_name: SP_POP_3539_MA
type: FLOAT
- column_name: SP_POP_3539_FE
type: FLOAT
- column_name: SH_IMM_HIB3
type: FLOAT
- column_name: SH_MED_CMHW_P3
type: FLOAT
- column_name: SH_MED_NUMW_P3
type: FLOAT
- column_name: SH_IMM_POL3
type: FLOAT
- column_name: SP_POP_4549_MA_5Y
type: FLOAT
- column_name: SP_POP_4549_FE_5Y
type: FLOAT
- column_name: SP_POP_4549_MA
type: FLOAT
- column_name: SP_POP_4549_FE
type: FLOAT
- column_name: SH_STA_ANV4_ZS
type: FLOAT
- column_name: SP_POP_5559_MA_5Y
type: FLOAT
- column_name: SP_POP_5559_FE_5Y
type: FLOAT
- column_name: SP_POP_5559_MA
type: FLOAT
- column_name: SP_POP_5559_FE
type: FLOAT
- column_name: SP_POP_6569_MA_5Y
type: FLOAT
- column_name: SP_POP_6569_FE_5Y
type: FLOAT
- column_name: SP_POP_7579_MA_5Y
type: FLOAT
- column_name: SP_POP_7579_FE_5Y
type: FLOAT
- column_name: SP_POP_6569_MA
type: FLOAT
- column_name: SP_POP_6569_FE
type: FLOAT
- column_name: SP_DYN_TO65_MA_ZS
type: FLOAT
- column_name: SP_POP_65UP_MA_ZS
type: FLOAT
- column_name: SP_DYN_TO65_FE_ZS
type: FLOAT
- column_name: SP_POP_65UP_FE_ZS
type: FLOAT
- column_name: SP_POP_65UP_TO_ZS
type: FLOAT
- column_name: SP_POP_65UP_TO
type: FLOAT
- column_name: SP_POP_7579_MA
type: FLOAT
- column_name: SP_POP_7579_FE
type: FLOAT
- column_name: SH_STA_MALN_MA_ZS
type: FLOAT
- column_name: SH_STA_WAST_MA_ZS
type: FLOAT
- column_name: SH_STA_DIAB_ZS
type: FLOAT
- column_name: SH_CON_AIDS_MA_ZS
type: FLOAT
- column_name: SH_STA_ARIC_ZS
type: FLOAT
- column_name: SH_STA_ACSN_RU
type: FLOAT
- column_name: SH_STA_ACSN_UR
type: FLOAT
- column_name: SH_STA_ANVC_ZS
type: FLOAT
- column_name: SH_STA_ACSN
type: FLOAT
- column_name: SE_ADT_LITR_MA_ZS
type: FLOAT
- column_name: SP_DYN_SMAM_MA
type: FLOAT
- column_name: SP_DYN_AMRT_MA
type: FLOAT
- column_name: SH_STA_MALN_FE_ZS
type: FLOAT
- column_name: SH_STA_WAST_FE_ZS
type: FLOAT
- column_name: SH_STA_OWGH_MA_ZS
type: FLOAT
- column_name: SH_STA_MALN_ZS
type: FLOAT
- column_name: SH_STA_MALR
type: FLOAT
- column_name: SH_STA_STNT_MA_ZS
type: FLOAT
- column_name: SH_SVR_WAST_MA_ZS
type: FLOAT
- column_name: SH_STA_WAST_ZS
type: FLOAT
- column_name: SH_STA_BRTC_ZS
type: FLOAT
- column_name: SH_STA_BFED_ZS
type: FLOAT
- column_name: SH_STA_BRTW_ZS
type: FLOAT
- column_name: NY_GNP_PCAP_CD
type: FLOAT
- column_name: SH_XPD_PCAP_PP_KD
type: FLOAT
- column_name: SH_CON_AIDS_FE_ZS
type: FLOAT
- column_name: SH_ANM_CHLD_ZS
type: FLOAT
- column_name: SH_XPD_PCAP
type: FLOAT
- column_name: SE_SEC_NENR_MA
type: FLOAT
- column_name: SE_SEC_ENRR_MA
type: FLOAT
- column_name: SE_PRM_CMPT_MA_ZS
type: FLOAT
- column_name: SH_STA_IYCF_ZS
type: FLOAT
- column_name: SH_STA_ORCF_ZS
type: FLOAT
- column_name: SH_PRG_ARTC_ZS
type: FLOAT
- column_name: SH_HIV_ARTC_ZS
type: FLOAT
- column_name: SI_POV_NAHC
type: FLOAT
- column_name: SH_STA_PNVC_ZS
type: FLOAT
- column_name: SH_VAC_TTNS_ZS
type: FLOAT
- column_name: SH_DYN_AIDS_DH
type: FLOAT
- column_name: SH_DYN_AIDS_FE_ZS
type: FLOAT
- column_name: SH_DYN_AIDS_ZS
type: FLOAT
- column_name: SH_DYN_AIDS
type: FLOAT
- column_name: SE_ADT_LITR_FE_ZS
type: FLOAT
- column_name: SP_DYN_SMAM_FE
type: FLOAT
- column_name: SP_DYN_AMRT_FE
type: FLOAT
- column_name: SE_ADT_LITR_ZS
type: FLOAT
- column_name: SP_ADO_TFRT
type: FLOAT
- column_name: SH_DYN_MORT_MA
type: FLOAT
- column_name: SP_DYN_IMRT_MA_IN
type: FLOAT
- column_name: SE_PRM_NENR_MA
type: FLOAT
- column_name: SE_PRM_ENRR_MA
type: FLOAT
- column_name: SH_STA_OWGH_FE_ZS
type: FLOAT
- column_name: SP_HOU_FEMA_ZS
type: FLOAT
- column_name: SH_STA_STNT_FE_ZS
type: FLOAT
- column_name: SH_SVR_WAST_FE_ZS
type: FLOAT
- column_name: SH_MMR_WAGE_ZS
type: FLOAT
- column_name: SH_PRG_ANEM
type: FLOAT
- column_name: SH_IMM_MEAS
type: FLOAT
- column_name: SH_STA_MMRT_NE
type: FLOAT
- column_name: SL_UEM_TOTL_MA_ZS
type: FLOAT
- column_name: SH_FPL_SATI_ZS
type: FLOAT
- column_name: SH_STA_OWGH_ZS
type: FLOAT
- column_name: SH_ANM_NPRG_ZS
type: FLOAT
- column_name: SH_HIV_KNOW_MA_ZS
type: FLOAT
- column_name: SH_STA_ORTH
type: FLOAT
- column_name: SH_PRV_SMOK_MA
type: FLOAT
- column_name: SH_STA_MMRT
type: FLOAT
- column_name: SH_STA_STNT_ZS
type: FLOAT
- column_name: SH_SVR_WAST_ZS
type: FLOAT
- column_name: SN_ITK_VITA_ZS
type: FLOAT
- column_name: SN_ITK_SALT_ZS
type: FLOAT
- column_name: SP_POP_TOTL_MA_IN
type: FLOAT
- column_name: SP_POP_TOTL_MA_ZS
type: FLOAT
- column_name: SH_TBS_DTEC_ZS
type: FLOAT
- column_name: SH_TBS_INCD
type: FLOAT
- column_name: SP_DYN_CBRT_IN
type: FLOAT
- column_name: SH_TBS_CURE_ZS
type: FLOAT
- column_name: SH_IMM_IBCG
type: FLOAT
- column_name: SH_MED_BEDS_ZS
type: FLOAT
- column_name: SH_XPD_PUBL_GX_ZS
type: FLOAT
- column_name: SH_XPD_PUBL_ZS
type: FLOAT
- column_name: SH_XPD_PUBL
type: FLOAT
- column_name: SP_REG_BRTH_RU_ZS
type: FLOAT
- column_name: SP_REG_BRTH_UR_ZS
type: FLOAT
- column_name: SP_REG_BRTH_ZS
type: FLOAT
- column_name: SH_IMM_HEPB
type: FLOAT
- column_name: SH_TBS_PREV
type: FLOAT
- column_name: SP_POP_BRTH_MF
type: FLOAT
- column_name: SP_URB_GROW
type: FLOAT
- column_name: SH_TBS_MORT
type: FLOAT
- column_name: SP_URB_TOTL_IN_ZS
type: FLOAT
- column_name: SP_URB_TOTL
type: FLOAT
- column_name: SH_XPD_TOTL_CD
type: FLOAT
- column_name: SP_DYN_CDRT_IN
type: FLOAT
- column_name: SN_ITK_DEFC_ZS
type: FLOAT
- column_name: SN_ITK_DEFC
type: FLOAT
- column_name: SH_DTH_COMM_ZS
type: FLOAT
- column_name: SH_DTH_NCOM_ZS
type: FLOAT
- column_name: SH_XPD_OOPC_TO_ZS
type: FLOAT
- column_name: SH_XPD_OOPC_ZS
type: FLOAT
- column_name: SP_DYN_CONU_ZS
type: FLOAT
- column_name: SE_SEC_NENR_FE
type: FLOAT
- column_name: SE_SEC_ENRR_FE
type: FLOAT
- column_name: SE_SEC_NENR
type: FLOAT
- column_name: SE_SEC_ENRR
type: FLOAT
- column_name: SE_PRM_CMPT_FE_ZS
type: FLOAT
- column_name: SE_PRM_CMPT_ZS
type: FLOAT
- column_name: SI_POV_RUHC
type: FLOAT
- column_name: SI_POV_URHC
type: FLOAT
- column_name: SE_XPD_TOTL_GD_ZS
type: FLOAT
- column_name: SP_POP_DPND_YG
type: FLOAT
- column_name: SP_POP_DPND_OL
type: FLOAT
- column_name: SP_POP_DPND
type: FLOAT
- column_name: SH_DYN_MORT_FE
type: FLOAT
- column_name: SP_DYN_IMRT_FE_IN
type: FLOAT
- column_name: SP_REG_DTHS_ZS
type: FLOAT
- column_name: SH_MED_PHYS_ZS
type: FLOAT
- column_name: SH_XPD_EXTR_ZS
type: FLOAT
- column_name: SP_DYN_TFRT_IN
type: FLOAT
- column_name: SP_DYN_WFRT
type: FLOAT
- column_name: SH_DTH_INJR_ZS
type: FLOAT
- column_name: SH_DTH_IMRT
type: FLOAT
- column_name: SH_MMR_DTHS
type: FLOAT
- column_name: SH_DTH_NMRT
type: FLOAT
- column_name: SH_DTH_MORT
type: FLOAT
- column_name: SH_IMM_IDPT
type: FLOAT
- column_name: SH_XPD_PRIV_ZS
type: FLOAT
- column_name: SH_XPD_PRIV
type: FLOAT
- column_name: SH_XPD_TOTL_ZS
type: FLOAT
- column_name: SH_DYN_NMRT
type: FLOAT
- column_name: SH_DYN_MORT
type: FLOAT
- column_name: SP_DYN_IMRT_IN
type: FLOAT
- column_name: SE_TER_ENRR_FE
type: FLOAT
- column_name: SE_PRM_NENR_FE
type: FLOAT
- column_name: SE_PRM_ENRR_FE
type: FLOAT
- column_name: SE_TER_ENRR
type: FLOAT
- column_name: SL_EMP_INSV_FE_ZS
type: FLOAT
- column_name: SL_UEM_TOTL_FE_ZS
type: FLOAT
- column_name: SH_MMR_LEVE
type: FLOAT
- column_name: SE_ENR_ORPH
type: FLOAT
- column_name: SE_PRM_NENR
type: FLOAT
- column_name: SE_PRM_ENRR
type: FLOAT
- column_name: SL_TLF_TOTL_FE_ZS
type: FLOAT
- column_name: SH_HIV_KNOW_FE_ZS
type: FLOAT
- column_name: SH_PRV_SMOK_FE
type: FLOAT
- column_name: SP_POP_TOTL_FE_IN
type: FLOAT
- column_name: SP_POP_TOTL_FE_ZS
type: FLOAT
- column_name: SH_MLR_PREG_ZS
type: FLOAT
- column_name: SH_MLR_NETS_ZS
type: FLOAT
- column_name: SH_MLR_TRET_ZS
type: FLOAT
- column_name: SL_UEM_TOTL_ZS
type: FLOAT
- column_name: SM_POP_NETM
type: FLOAT
- column_name: SL_TLF_TOTL_IN
type: FLOAT
- column_name: SP_UWT_TFRT
type: FLOAT
- column_name: SH_PRG_SYPH_ZS
type: FLOAT
- column_name: SP_RUR_TOTL_ZG
type: FLOAT
- column_name: SP_POP_GROW
type: FLOAT
- column_name: SH_HIV_ORPH
type: FLOAT
- column_name: SH_HIV_TOTL
type: FLOAT
- column_name: SH_MMR_RISK_ZS
type: FLOAT
- column_name: SH_MMR_RISK
type: FLOAT
- column_name: SP_POP_TOTL
type: FLOAT
- column_name: SP_RUR_TOTL_ZS
type: FLOAT
- column_name: SP_RUR_TOTL
type: FLOAT
description: "<!--\nLicensed to the Apache Software Foundation (ASF) under one\n\
or more contributor license agreements. See the NOTICE file\ndistributed with\
\ this work for additional information\nregarding copyright ownership. The ASF\
\ licenses this file\nto you under the Apache License, Version 2.0 (the\n\"License\"\
); you may not use this file except in compliance\nwith the License. You may\
\ obtain a copy of the License at\n\n http://www.apache.org/licenses/LICENSE-2.0\n\
\nUnless required by applicable law or agreed to in writing,\nsoftware distributed\
\ under the License is distributed on an\n\"AS IS\" BASIS, WITHOUT WARRANTIES\
\ OR CONDITIONS OF ANY\nKIND, either express or implied. See the License for\
\ the\nspecific language governing permissions and limitations\nunder the License.\n\
-->\nThis data was downloaded from the\n[World's Health Organization's website](https://datacatalog.worldbank.org/dataset/health-nutrition-and-population-statistics)\n\
\nHere's the script that was used to massage the data:\n\n DIR = \"\"\n \
\ df_country = pd.read_csv(DIR + '/HNP_Country.csv')\n df_country.columns =\
\ ['country_code'] + list(df_country.columns[1:])\n df_country = df_country[['country_code',\
\ 'Region']]\n df_country.columns = ['country_code', 'region']\n\n df =\
\ pd.read_csv(DIR + '/HNP_Data.csv')\n del df['Unnamed: 60']\n df.columns\
\ = ['country_name', 'country_code'] + list(df.columns[2:])\n ndf = df.merge(df_country,\
\ how='inner')\n\n dims = ('country_name', 'country_code', 'region')\n vv\
\ = [str(i) for i in range(1960, 2015)]\n mdf = pd.melt(ndf, id_vars=dims +\
\ ('Indicator Code',), value_vars=vv)\n mdf['year'] = mdf.variable + '-01-01'\n\
\ dims = dims + ('year',)\n\n pdf = mdf.pivot_table(values='value', columns='Indicator\
\ Code', index=dims)\n pdf = pdf.reset_index()\n pdf.to_csv(DIR + '/countries.csv')\n\
\ pdf.to_json(DIR + '/countries.json', orient='records')\n\nHere's the description\
\ of the metrics available:\n\nSeries | Code Indicator Name\n--- | ---\nNY.GNP.PCAP.CD\
\ | GNI per capita, Atlas method (current US$)\nSE.ADT.1524.LT.FM.ZS | Literacy\
\ rate, youth (ages 15-24), gender parity index (GPI)\nSE.ADT.1524.LT.MA.ZS |\
\ Literacy rate, youth male (% of males ages 15-24)\nSE.ADT.1524.LT.ZS | Literacy\
\ rate, youth total (% of people ages 15-24)\nSE.ADT.LITR.FE.ZS | Literacy rate,\
\ adult female (% of females ages 15 and above)\nSE.ADT.LITR.MA.ZS | Literacy\
\ rate, adult male (% of males ages 15 and above)\nSE.ADT.LITR.ZS | Literacy rate,\
\ adult total (% of people ages 15 and above)\nSE.ENR.ORPH | Ratio of school attendance\
\ of orphans to school attendance of non-orphans ages 10-14\nSE.PRM.CMPT.FE.ZS\
\ | Primary completion rate, female (% of relevant age group)\nSE.PRM.CMPT.MA.ZS\
\ | Primary completion rate, male (% of relevant age group)\nSE.PRM.CMPT.ZS |\
\ Primary completion rate, total (% of relevant age group)\nSE.PRM.ENRR | School\
\ enrollment, primary (% gross)\nSE.PRM.ENRR.FE | School enrollment, primary,\
\ female (% gross)\nSE.PRM.ENRR.MA | School enrollment, primary, male (% gross)\n\
SE.PRM.NENR | School enrollment, primary (% net)\nSE.PRM.NENR.FE | School enrollment,\
\ primary, female (% net)\nSE.PRM.NENR.MA | School enrollment, primary, male (%\
\ net)\nSE.SEC.ENRR | School enrollment, secondary (% gross)\nSE.SEC.ENRR.FE |\
\ School enrollment, secondary, female (% gross)\nSE.SEC.ENRR.MA | School enrollment,\
\ secondary, male (% gross)\nSE.SEC.NENR | School enrollment, secondary (% net)\n\
SE.SEC.NENR.FE | School enrollment, secondary, female (% net)\nSE.SEC.NENR.MA\
\ | School enrollment, secondary, male (% net)\nSE.TER.ENRR | School enrollment,\
\ tertiary (% gross)\nSE.TER.ENRR.FE | School enrollment, tertiary, female (%\
\ gross)\nSE.XPD.TOTL.GD.ZS | Government expenditure on education, total (% of\
\ GDP)\nSH.ANM.CHLD.ZS | Prevalence of anemia among children (% of children under\
\ 5)\nSH.ANM.NPRG.ZS | Prevalence of anemia among non-pregnant women (% of women\
\ ages 15-49)\nSH.CON.1524.FE.ZS | Condom use, population ages 15-24, female (%\
\ of females ages 15-24)\nSH.CON.1524.MA.ZS | Condom use, population ages 15-24,\
\ male (% of males ages 15-24)\nSH.CON.AIDS.FE.ZS | Condom use at last high-risk\
\ sex, adult female (% ages 15-49)\nSH.CON.AIDS.MA.ZS | Condom use at last high-risk\
\ sex, adult male (% ages 15-49)\nSH.DTH.COMM.ZS | Cause of death, by communicable\
\ diseases and maternal, prenatal and nutrition conditions (% of total)\nSH.DTH.IMRT\
\ | Number of infant deaths\nSH.DTH.INJR.ZS | Cause of death, by injury (% of\
\ total)\nSH.DTH.MORT | Number of under-five deaths\nSH.DTH.NCOM.ZS | Cause of\
\ death, by non-communicable diseases (% of total)\nSH.DTH.NMRT | Number of neonatal\
\ deaths\nSH.DYN.AIDS | Adults (ages 15+) living with HIV\nSH.DYN.AIDS.DH | AIDS\
\ estimated deaths (UNAIDS estimates)\nSH.DYN.AIDS.FE.ZS | Women's share of population\
\ ages 15+ living with HIV (%)\nSH.DYN.AIDS.ZS | Prevalence of HIV, total (% of\
\ population ages 15-49)\nSH.DYN.MORT | Mortality rate, under-5 (per 1,000 live\
\ births)\nSH.DYN.MORT.FE | Mortality rate, under-5, female (per 1,000 live births)\n\
SH.DYN.MORT.MA | Mortality rate, under-5, male (per 1,000 live births)\nSH.DYN.NMRT\
\ | Mortality rate, neonatal (per 1,000 live births)\nSH.FPL.SATI.ZS | Met need\
\ for contraception (% of married women ages 15-49)\nSH.H2O.SAFE.RU.ZS | Improved\
\ water source, rural (% of rural population with access)\nSH.H2O.SAFE.UR.ZS |\
\ Improved water source, urban (% of urban population with access)\nSH.H2O.SAFE.ZS\
\ | Improved water source (% of population with access)\nSH.HIV.0014 | Children\
\ (0-14) living with HIV\nSH.HIV.1524.FE.ZS | Prevalence of HIV, female (% ages\
\ 15-24)\nSH.HIV.1524.KW.FE.ZS | Comprehensive correct knowledge of HIV/AIDS,\
\ ages 15-24, female (2 prevent ways and reject 3 misconceptions)\nSH.HIV.1524.KW.MA.ZS\
\ | Comprehensive correct knowledge of HIV/AIDS, ages 15-24, male (2 prevent ways\
\ and reject 3 misconceptions)\nSH.HIV.1524.MA.ZS | Prevalence of HIV, male (%\
\ ages 15-24)\nSH.HIV.ARTC.ZS | Antiretroviral therapy coverage (% of people living\
\ with HIV)\nSH.HIV.KNOW.FE.ZS | % of females ages 15-49 having comprehensive\
\ correct knowledge about HIV (2 prevent ways and reject 3 misconceptions)\nSH.HIV.KNOW.MA.ZS\
\ | % of males ages 15-49 having comprehensive correct knowledge about HIV (2\
\ prevent ways and reject 3 misconceptions)\nSH.HIV.ORPH | Children orphaned by\
\ HIV/AIDS\nSH.HIV.TOTL | Adults (ages 15+) and children (0-14 years) living with\
\ HIV\nSH.IMM.HEPB | Immunization, HepB3 (% of one-year-old children)\nSH.IMM.HIB3\
\ | Immunization, Hib3 (% of children ages 12-23 months)\nSH.IMM.IBCG | Immunization,\
\ BCG (% of one-year-old children)\nSH.IMM.IDPT | Immunization, DPT (% of children\
\ ages 12-23 months)\nSH.IMM.MEAS | Immunization, measles (% of children ages\
\ 12-23 months)\nSH.IMM.POL3 | Immunization, Pol3 (% of one-year-old children)\n\
SH.MED.BEDS.ZS | Hospital beds (per 1,000 people)\nSH.MED.CMHW.P3 | Community\
\ health workers (per 1,000 people)\nSH.MED.NUMW.P3 | Nurses and midwives (per\
\ 1,000 people)\nSH.MED.PHYS.ZS | Physicians (per 1,000 people)\nSH.MLR.NETS.ZS\
\ | Use of insecticide-treated bed nets (% of under-5 population)\nSH.MLR.PREG.ZS\
\ | Use of any antimalarial drug (% of pregnant women)\nSH.MLR.SPF2.ZS | Use of\
\ Intermittent Preventive Treatment of malaria, 2+ doses of SP/Fansidar (% of\
\ pregnant women)\nSH.MLR.TRET.ZS | Children with fever receiving antimalarial\
\ drugs (% of children under age 5 with fever)\nSH.MMR.DTHS | Number of maternal\
\ deaths\nSH.MMR.LEVE | Number of weeks of maternity leave\nSH.MMR.RISK | Lifetime\
\ risk of maternal death (1 in: rate varies by country)\nSH.MMR.RISK.ZS | Lifetime\
\ risk of maternal death (%)\nSH.MMR.WAGE.ZS | Maternal leave benefits (% of wages\
\ paid in covered period)\nSH.PRG.ANEM | Prevalence of anemia among pregnant women\
\ (%)\nSH.PRG.ARTC.ZS | Antiretroviral therapy coverage (% of pregnant women living\
\ with HIV)\nSH.PRG.SYPH.ZS | Prevalence of syphilis (% of women attending antenatal\
\ care)\nSH.PRV.SMOK.FE | Smoking prevalence, females (% of adults)\nSH.PRV.SMOK.MA\
\ | Smoking prevalence, males (% of adults)\nSH.STA.ACSN | Improved sanitation\
\ facilities (% of population with access)\nSH.STA.ACSN.RU | Improved sanitation\
\ facilities, rural (% of rural population with access)\nSH.STA.ACSN.UR | Improved\
\ sanitation facilities, urban (% of urban population with access)\nSH.STA.ANV4.ZS\
\ | Pregnant women receiving prenatal care of at least four visits (% of pregnant\
\ women)\nSH.STA.ANVC.ZS | Pregnant women receiving prenatal care (%)\nSH.STA.ARIC.ZS\
\ | ARI treatment (% of children under 5 taken to a health provider)\nSH.STA.BFED.ZS\
\ | Exclusive breastfeeding (% of children under 6 months)\nSH.STA.BRTC.ZS | Births\
\ attended by skilled health staff (% of total)\nSH.STA.BRTW.ZS | Low-birthweight\
\ babies (% of births)\nSH.STA.DIAB.ZS | Diabetes prevalence (% of population\
\ ages 20 to 79)\nSH.STA.IYCF.ZS | Infant and young child feeding practices, all\
\ 3 IYCF (% children ages 6-23 months)\nSH.STA.MALN.FE.ZS | Prevalence of underweight,\
\ weight for age, female (% of children under 5)\nSH.STA.MALN.MA.ZS | Prevalence\
\ of underweight, weight for age, male (% of children under 5)\nSH.STA.MALN.ZS\
\ | Prevalence of underweight, weight for age (% of children under 5)\nSH.STA.MALR\
\ | Malaria cases reported\nSH.STA.MMRT | Maternal mortality ratio (modeled estimate,\
\ per 100,000 live births)\nSH.STA.MMRT.NE | Maternal mortality ratio (national\
\ estimate, per 100,000 live births)\nSH.STA.ORCF.ZS | Diarrhea treatment (% of\
\ children under 5 receiving oral rehydration and continued feeding)\nSH.STA.ORTH\
\ | Diarrhea treatment (% of children under 5 who received ORS packet)\nSH.STA.OW15.FE.ZS\
\ | Prevalence of overweight, female (% of female adults)\nSH.STA.OW15.MA.ZS |\
\ Prevalence of overweight, male (% of male adults)\nSH.STA.OW15.ZS | Prevalence\
\ of overweight (% of adults)\nSH.STA.OWGH.FE.ZS | Prevalence of overweight, weight\
\ for height, female (% of children under 5)\nSH.STA.OWGH.MA.ZS | Prevalence of\
\ overweight, weight for height, male (% of children under 5)\nSH.STA.OWGH.ZS\
\ | Prevalence of overweight, weight for height (% of children under 5)\nSH.STA.PNVC.ZS\
\ | Postnatal care coverage (% mothers)\nSH.STA.STNT.FE.ZS | Prevalence of stunting,\
\ height for age, female (% of children under 5)\nSH.STA.STNT.MA.ZS | Prevalence\
\ of stunting, height for age, male (% of children under 5)\nSH.STA.STNT.ZS |\
\ Prevalence of stunting, height for age (% of children under 5)\nSH.STA.WAST.FE.ZS\
\ | Prevalence of wasting, weight for height, female (% of children under 5)\n\
SH.STA.WAST.MA.ZS | Prevalence of wasting, weight for height, male (% of children\
\ under 5)\nSH.STA.WAST.ZS | Prevalence of wasting, weight for height (% of children\
\ under 5)\nSH.SVR.WAST.FE.ZS | Prevalence of severe wasting, weight for height,\
\ female (% of children under 5)\nSH.SVR.WAST.MA.ZS | Prevalence of severe wasting,\
\ weight for height, male (% of children under 5)\nSH.SVR.WAST.ZS | Prevalence\
\ of severe wasting, weight for height (% of children under 5)\nSH.TBS.CURE.ZS\
\ | Tuberculosis treatment success rate (% of new cases)\nSH.TBS.DTEC.ZS | Tuberculosis\
\ case detection rate (%, all forms)\nSH.TBS.INCD | Incidence of tuberculosis\
\ (per 100,000 people)\nSH.TBS.MORT | Tuberculosis death rate (per 100,000 people)\n\
SH.TBS.PREV | Prevalence of tuberculosis (per 100,000 population)\nSH.VAC.TTNS.ZS\
\ | Newborns protected against tetanus (%)\nSH.XPD.EXTR.ZS | External resources\
\ for health (% of total expenditure on health)\nSH.XPD.OOPC.TO.ZS | Out-of-pocket\
\ health expenditure (% of total expenditure on health)\nSH.XPD.OOPC.ZS | Out-of-pocket\
\ health expenditure (% of private expenditure on health)\nSH.XPD.PCAP | Health\
\ expenditure per capita (current US$)\nSH.XPD.PCAP.PP.KD | Health expenditure\
\ per capita, PPP (constant 2011 international $)\nSH.XPD.PRIV | Health expenditure,\
\ private (% of total health expenditure)\nSH.XPD.PRIV.ZS | Health expenditure,\
\ private (% of GDP)\nSH.XPD.PUBL | Health expenditure, public (% of total health\
\ expenditure)\nSH.XPD.PUBL.GX.ZS | Health expenditure, public (% of government\
\ expenditure)\nSH.XPD.PUBL.ZS | Health expenditure, public (% of GDP)\nSH.XPD.TOTL.CD\
\ | Health expenditure, total (current US$)\nSH.XPD.TOTL.ZS | Health expenditure,\
\ total (% of GDP)\nSI.POV.NAHC | Poverty headcount ratio at national poverty\
\ lines (% of population)\nSI.POV.RUHC | Rural poverty headcount ratio at national\
\ poverty lines (% of rural population)\nSI.POV.URHC | Urban poverty headcount\
\ ratio at national poverty lines (% of urban population)\nSL.EMP.INSV.FE.ZS |\
\ Share of women in wage employment in the nonagricultural sector (% of total\
\ nonagricultural employment)\nSL.TLF.TOTL.FE.ZS | Labor force, female (% of total\
\ labor force)\nSL.TLF.TOTL.IN | Labor force, total\nSL.UEM.TOTL.FE.ZS | Unemployment,\
\ female (% of female labor force) (modeled ILO estimate)\nSL.UEM.TOTL.MA.ZS |\
\ Unemployment, male (% of male labor force) (modeled ILO estimate)\nSL.UEM.TOTL.ZS\
\ | Unemployment, total (% of total labor force) (modeled ILO estimate)\nSM.POP.NETM\
\ | Net migration\nSN.ITK.DEFC | Number of people who are undernourished\nSN.ITK.DEFC.ZS\
\ | Prevalence of undernourishment (% of population)\nSN.ITK.SALT.ZS | Consumption\
\ of iodized salt (% of households)\nSN.ITK.VITA.ZS | Vitamin A supplementation\
\ coverage rate (% of children ages 6-59 months)\nSP.ADO.TFRT | Adolescent fertility\
\ rate (births per 1,000 women ages 15-19)\nSP.DYN.AMRT.FE | Mortality rate, adult,\
\ female (per 1,000 female adults)\nSP.DYN.AMRT.MA | Mortality rate, adult, male\
\ (per 1,000 male adults)\nSP.DYN.CBRT.IN | Birth rate, crude (per 1,000 people)\n\
SP.DYN.CDRT.IN | Death rate, crude (per 1,000 people)\nSP.DYN.CONU.ZS | Contraceptive\
\ prevalence (% of women ages 15-49)\nSP.DYN.IMRT.FE.IN | Mortality rate, infant,\
\ female (per 1,000 live births)\nSP.DYN.IMRT.IN | Mortality rate, infant (per\
\ 1,000 live births)\nSP.DYN.IMRT.MA.IN | Mortality rate, infant, male (per 1,000\
\ live births)\nSP.DYN.LE00.FE.IN | Life expectancy at birth, female (years)\n\
SP.DYN.LE00.IN | Life expectancy at birth, total (years)\nSP.DYN.LE00.MA.IN |\
\ Life expectancy at birth, male (years)\nSP.DYN.SMAM.FE | Mean age at first marriage,\
\ female\nSP.DYN.SMAM.MA | Mean age at first marriage, male\nSP.DYN.TFRT.IN |\
\ Fertility rate, total (births per woman)\nSP.DYN.TO65.FE.ZS | Survival to age\
\ 65, female (% of cohort)\nSP.DYN.TO65.MA.ZS | Survival to age 65, male (% of\
\ cohort)\nSP.DYN.WFRT | Wanted fertility rate (births per woman)\nSP.HOU.FEMA.ZS\
\ | Female headed households (% of households with a female head)\nSP.MTR.1519.ZS\
\ | Teenage mothers (% of women ages 15-19 who have had children or are currently\
\ pregnant)\nSP.POP.0004.FE | Population ages 0-4, female\nSP.POP.0004.FE.5Y |\
\ Population ages 0-4, female (% of female population)\nSP.POP.0004.MA | Population\
\ ages 0-4, male\nSP.POP.0004.MA.5Y | Population ages 0-4, male (% of male population)\n\
SP.POP.0014.FE.ZS | Population ages 0-14, female (% of total)\nSP.POP.0014.MA.ZS\
\ | Population ages 0-14, male (% of total)\nSP.POP.0014.TO | Population ages\
\ 0-14, total\nSP.POP.0014.TO.ZS | Population ages 0-14 (% of total)\nSP.POP.0509.FE\
\ | Population ages 5-9, female\nSP.POP.0509.FE.5Y | Population ages 5-9, female\
\ (% of female population)\nSP.POP.0509.MA | Population ages 5-9, male\nSP.POP.0509.MA.5Y\
\ | Population ages 5-9, male (% of male population)\nSP.POP.1014.FE | Population\
\ ages 10-14, female\nSP.POP.1014.FE.5Y | Population ages 10-14, female (% of\
\ female population)\nSP.POP.1014.MA | Population ages 10-14, male\nSP.POP.1014.MA.5Y\
\ | Population ages 10-14, male (% of male population)\nSP.POP.1519.FE | Population\
\ ages 15-19, female\nSP.POP.1519.FE.5Y | Population ages 15-19, female (% of\
\ female population)\nSP.POP.1519.MA | Population ages 15-19, male\nSP.POP.1519.MA.5Y\
\ | Population ages 15-19, male (% of male population)\nSP.POP.1564.FE.ZS | Population\
\ ages 15-64, female (% of total)\nSP.POP.1564.MA.ZS | Population ages 15-64,\
\ male (% of total)\nSP.POP.1564.TO | Population ages 15-64, total\nSP.POP.1564.TO.ZS\
\ | Population ages 15-64 (% of total)\nSP.POP.2024.FE | Population ages 20-24,\
\ female\nSP.POP.2024.FE.5Y | Population ages 20-24, female (% of female population)\n\
SP.POP.2024.MA | Population ages 20-24, male\nSP.POP.2024.MA.5Y | Population ages\
\ 20-24, male (% of male population)\nSP.POP.2529.FE | Population ages 25-29,\
\ female\nSP.POP.2529.FE.5Y | Population ages 25-29, female (% of female population)\n\
SP.POP.2529.MA | Population ages 25-29, male\nSP.POP.2529.MA.5Y | Population ages\
\ 25-29, male (% of male population)\nSP.POP.3034.FE | Population ages 30-34,\
\ female\nSP.POP.3034.FE.5Y | Population ages 30-34, female (% of female population)\n\
SP.POP.3034.MA | Population ages 30-34, male\nSP.POP.3034.MA.5Y | Population ages\
\ 30-34, male (% of male population)\nSP.POP.3539.FE | Population ages 35-39,\
\ female\nSP.POP.3539.FE.5Y | Population ages 35-39, female (% of female population)\n\
SP.POP.3539.MA | Population ages 35-39, male\nSP.POP.3539.MA.5Y | Population ages\
\ 35-39, male (% of male population)\nSP.POP.4044.FE | Population ages 40-44,\
\ female\nSP.POP.4044.FE.5Y | Population ages 40-44, female (% of female population)\n\
SP.POP.4044.MA | Population ages 40-44, male\nSP.POP.4044.MA.5Y | Population ages\
\ 40-44, male (% of male population)\nSP.POP.4549.FE | Population ages 45-49,\
\ female\nSP.POP.4549.FE.5Y | Population ages 45-49, female (% of female population)\n\
SP.POP.4549.MA | Population ages 45-49, male\nSP.POP.4549.MA.5Y | Population ages\
\ 45-49, male (% of male population)\nSP.POP.5054.FE | Population ages 50-54,\
\ female\nSP.POP.5054.FE.5Y | Population ages 50-54, female (% of female population)\n\
SP.POP.5054.MA | Population ages 50-54, male\nSP.POP.5054.MA.5Y | Population ages\
\ 50-54, male (% of male population)\nSP.POP.5559.FE | Population ages 55-59,\
\ female\nSP.POP.5559.FE.5Y | Population ages 55-59, female (% of female population)\n\
SP.POP.5559.MA | Population ages 55-59, male\nSP.POP.5559.MA.5Y | Population ages\
\ 55-59, male (% of male population)\nSP.POP.6064.FE | Population ages 60-64,\
\ female\nSP.POP.6064.FE.5Y | Population ages 60-64, female (% of female population)\n\
SP.POP.6064.MA | Population ages 60-64, male\nSP.POP.6064.MA.5Y | Population ages\
\ 60-64, male (% of male population)\nSP.POP.6569.FE | Population ages 65-69,\
\ female\nSP.POP.6569.FE.5Y | Population ages 65-69, female (% of female population)\n\
SP.POP.6569.MA | Population ages 65-69, male\nSP.POP.6569.MA.5Y | Population ages\
\ 65-69, male (% of male population)\nSP.POP.65UP.FE.ZS | Population ages 65 and\
\ above, female (% of total)\nSP.POP.65UP.MA.ZS | Population ages 65 and above,\
\ male (% of total)\nSP.POP.65UP.TO | Population ages 65 and above, total\nSP.POP.65UP.TO.ZS\
\ | Population ages 65 and above (% of total)\nSP.POP.7074.FE | Population ages\
\ 70-74, female\nSP.POP.7074.FE.5Y | Population ages 70-74, female (% of female\
\ population)\nSP.POP.7074.MA | Population ages 70-74, male\nSP.POP.7074.MA.5Y\
\ | Population ages 70-74, male (% of male population)\nSP.POP.7579.FE | Population\
\ ages 75-79, female\nSP.POP.7579.FE.5Y | Population ages 75-79, female (% of\
\ female population)\nSP.POP.7579.MA | Population ages 75-79, male\nSP.POP.7579.MA.5Y\
\ | Population ages 75-79, male (% of male population)\nSP.POP.80UP.FE | Population\
\ ages 80 and above, female\nSP.POP.80UP.FE.5Y | Population ages 80 and above,\
\ female (% of female population)\nSP.POP.80UP.MA | Population ages 80 and above,\
\ male\nSP.POP.80UP.MA.5Y | Population ages 80 and above, male (% of male population)\n\
SP.POP.AG00.FE.IN | Age population, age 0, female, interpolated\nSP.POP.AG00.MA.IN\
\ | Age population, age 0, male, interpolated\nSP.POP.AG01.FE.IN | Age population,\
\ age 01, female, interpolated\nSP.POP.AG01.MA.IN | Age population, age 01, male,\
\ interpolated\nSP.POP.AG02.FE.IN | Age population, age 02, female, interpolated\n\
SP.POP.AG02.MA.IN | Age population, age 02, male, interpolated\nSP.POP.AG03.FE.IN\
\ | Age population, age 03, female, interpolated\nSP.POP.AG03.MA.IN | Age population,\
\ age 03, male, interpolated\nSP.POP.AG04.FE.IN | Age population, age 04, female,\
\ interpolated\nSP.POP.AG04.MA.IN | Age population, age 04, male, interpolated\n\
SP.POP.AG05.FE.IN | Age population, age 05, female, interpolated\nSP.POP.AG05.MA.IN\
\ | Age population, age 05, male, interpolated\nSP.POP.AG06.FE.IN | Age population,\
\ age 06, female, interpolated\nSP.POP.AG06.MA.IN | Age population, age 06, male,\
\ interpolated\nSP.POP.AG07.FE.IN | Age population, age 07, female, interpolated\n\
SP.POP.AG07.MA.IN | Age population, age 07, male, interpolated\nSP.POP.AG08.FE.IN\
\ | Age population, age 08, female, interpolated\nSP.POP.AG08.MA.IN | Age population,\
\ age 08, male, interpolated\nSP.POP.AG09.FE.IN | Age population, age 09, female,\
\ interpolated\nSP.POP.AG09.MA.IN | Age population, age 09, male, interpolated\n\
SP.POP.AG10.FE.IN | Age population, age 10, female, interpolated\nSP.POP.AG10.MA.IN\
\ | Age population, age 10, male\nSP.POP.AG11.FE.IN | Age population, age 11,\
\ female, interpolated\nSP.POP.AG11.MA.IN | Age population, age 11, male\nSP.POP.AG12.FE.IN\
\ | Age population, age 12, female, interpolated\nSP.POP.AG12.MA.IN | Age population,\
\ age 12, male\nSP.POP.AG13.FE.IN | Age population, age 13, female, interpolated\n\
SP.POP.AG13.MA.IN | Age population, age 13, male\nSP.POP.AG14.FE.IN | Age population,\
\ age 14, female, interpolated\nSP.POP.AG14.MA.IN | Age population, age 14, male\n\
SP.POP.AG15.FE.IN | Age population, age 15, female, interpolated\nSP.POP.AG15.MA.IN\
\ | Age population, age 15, male, interpolated\nSP.POP.AG16.FE.IN | Age population,\
\ age 16, female, interpolated\nSP.POP.AG16.MA.IN | Age population, age 16, male,\
\ interpolated\nSP.POP.AG17.FE.IN | Age population, age 17, female, interpolated\n\
SP.POP.AG17.MA.IN | Age population, age 17, male, interpolated\nSP.POP.AG18.FE.IN\
\ | Age population, age 18, female, interpolated\nSP.POP.AG18.MA.IN | Age population,\
\ age 18, male, interpolated\nSP.POP.AG19.FE.IN | Age population, age 19, female,\
\ interpolated\nSP.POP.AG19.MA.IN | Age population, age 19, male, interpolated\n\
SP.POP.AG20.FE.IN | Age population, age 20, female, interpolated\nSP.POP.AG20.MA.IN\
\ | Age population, age 20, male, interpolated\nSP.POP.AG21.FE.IN | Age population,\
\ age 21, female, interpolated\nSP.POP.AG21.MA.IN | Age population, age 21, male,\
\ interpolated\nSP.POP.AG22.FE.IN | Age population, age 22, female, interpolated\n\
SP.POP.AG22.MA.IN | Age population, age 22, male, interpolated\nSP.POP.AG23.FE.IN\
\ | Age population, age 23, female, interpolated\nSP.POP.AG23.MA.IN | Age population,\
\ age 23, male, interpolated\nSP.POP.AG24.FE.IN | Age population, age 24, female,\
\ interpolated\nSP.POP.AG24.MA.IN | Age population, age 24, male, interpolated\n\
SP.POP.AG25.FE.IN | Age population, age 25, female, interpolated\nSP.POP.AG25.MA.IN\
\ | Age population, age 25, male, interpolated\nSP.POP.BRTH.MF | Sex ratio at\
\ birth (male births per female births)\nSP.POP.DPND | Age dependency ratio (%\
\ of working-age population)\nSP.POP.DPND.OL | Age dependency ratio, old (% of\
\ working-age population)\nSP.POP.DPND.YG | Age dependency ratio, young (% of\
\ working-age population)\nSP.POP.GROW | Population growth (annual %)\nSP.POP.TOTL\
\ | Population, total\nSP.POP.TOTL.FE.IN | Population, female\nSP.POP.TOTL.FE.ZS\
\ | Population, female (% of total)\nSP.POP.TOTL.MA.IN | Population, male\nSP.POP.TOTL.MA.ZS\
\ | Population, male (% of total)\nSP.REG.BRTH.RU.ZS | Completeness of birth registration,\
\ rural (%)\nSP.REG.BRTH.UR.ZS | Completeness of birth registration, urban (%)\n\
SP.REG.BRTH.ZS | Completeness of birth registration (%)\nSP.REG.DTHS.ZS | Completeness\
\ of death registration with cause-of-death information (%)\nSP.RUR.TOTL | Rural\
\ population\nSP.RUR.TOTL.ZG | Rural population growth (annual %)\nSP.RUR.TOTL.ZS\
\ | Rural population (% of total population)\nSP.URB.GROW | Urban population growth\
\ (annual %)\nSP.URB.TOTL | Urban population\nSP.URB.TOTL.IN.ZS | Urban population\
\ (% of total)\nSP.UWT.TFRT | Unmet need for contraception (% of married women\
\ ages 15-49)\n"
filter_select_enabled: true
main_dttm_col: year
metrics:
- expression: COUNT(*)
metric_name: count
metric_type: count
verbose_name: COUNT(*)
- expression: sum("SP_DYN_LE00_IN")
metric_name: sum__SP_DYN_LE00_IN
- expression: sum("SH_DYN_AIDS")
metric_name: sum__SH_DYN_AIDS
- expression: sum("SP_POP_TOTL")
metric_name: sum__SP_POP_TOTL
- expression: sum("SP_RUR_TOTL_ZS")
metric_name: sum__SP_RUR_TOTL_ZS
- expression: sum("SP_RUR_TOTL")
metric_name: sum__SP_RUR_TOTL
table_name: wb_health_population
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment