Skip to content

Instantly share code, notes, and snippets.

Show Gist options
  • Save bfarzin/e8037d9254e5e2a31742f11dd3416e13 to your computer and use it in GitHub Desktop.
Save bfarzin/e8037d9254e5e2a31742f11dd3416e13 to your computer and use it in GitHub Desktop.
IMDB Data Example SpaCy and SentencePiece
Display the source blob
Display the rendered blob
Raw
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"%reload_ext autoreload\n",
"%autoreload 2"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"from fastai import *\n",
"from fastai.text import *\n",
"import re\n",
"import sentencepiece as spm #https://github.com/google/sentencepiece\n",
"\n",
"np.random.seed(20180311)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Sentencepiece tokenizer & LM Build"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Data processing to DataBunch"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Get IMDB Data and build DF"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"PosixPath('/home/farzin/.fastai/data/imdb')"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"IMDB_PATH = untar_data(URLs.IMDB)\n",
"IMDB_PATH"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"(75000, 25000)"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"## raw data does not have the unsup in the train directory. Just move it there\n",
"# ~/.fastai/data/imdb$ mv unsup/ ./train/\n",
"CLASSES = ['neg', 'pos', 'unsup']\n",
"\n",
"def get_texts(path):\n",
" texts,labels = [],[]\n",
" for idx,label in enumerate(CLASSES):\n",
" for fname in (path/label).glob('*.*'):\n",
" texts.append(fname.open('r', encoding='utf8').read())\n",
" labels.append([0]) ## all unsupervised case\n",
"\n",
" return np.array(texts),np.array(labels)\n",
"\n",
"train_texts,train_labels = get_texts(IMDB_PATH/'train')\n",
"valid_texts,valid_labels = get_texts(IMDB_PATH/'test')\n",
"\n",
"len(train_texts),len(valid_texts)"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [],
"source": [
"## we can combine the \"train\" and \"valid\" for the LM step\n",
"all_texts = np.concatenate([train_texts,valid_texts])\n",
"all_texts_df = pd.DataFrame({'text':all_texts, 'labels':[0]*len(all_texts)}, columns=['labels','text'])"
]
},
{
"cell_type": "raw",
"metadata": {},
"source": [
"raw_text = all_texts_df.loc[:,'text']\n",
"\n",
"print(\"Default Rules:\\n\",[x.__name__ for x in defaults.text_pre_rules],\"\\n\\n\")\n",
"\n",
"for rule in defaults.text_pre_rules:\n",
" print(rule)\n",
" raw_text = raw_text.apply(lambda x: rule(str(x)))"
]
},
{
"cell_type": "raw",
"metadata": {},
"source": [
"## SentencePiece expects <s> ... </s> so we add that here:\n",
"all_texts_df['new_text'] = '<s>' + raw_text + '</s>'\n",
"all_texts_df['new_text'].head()"
]
},
{
"cell_type": "raw",
"metadata": {},
"source": [
"## save as a file for SP\n",
"formatted_text_file = 'tmp_IMDB_SP_example'\n",
"all_texts_df['new_text'].to_frame().to_csv(formatted_text_file, header=False,index=False,quotechar=' ')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### SP Tokenizer SWIG wrapper"
]
},
{
"cell_type": "raw",
"metadata": {},
"source": [
"# m.model and m.vocab created in the pwd\n",
"vocab_size = 500\n",
"model_prefix = 'wk103m_example'\n",
"\n",
"spm.SentencePieceTrainer.Train(f'--input={formatted_text_file}'\\\n",
" f' --model_prefix={model_prefix}'\\\n",
" f' --vocab_size={vocab_size}')\n",
"# f'--unk_piece={UNK} --bos_piece={BOS} --eos_id=-1 --pad_piece={PAD}')"
]
},
{
"cell_type": "raw",
"metadata": {},
"source": [
"## Vocab in order of frequency\n",
"!head -n50 {model_prefix}.vocab | nl"
]
},
{
"cell_type": "raw",
"metadata": {},
"source": [
"## load up the Processor\n",
"sp = spm.SentencePieceProcessor()\n",
"sp.load(f'{model_prefix}.model')\n",
"\n",
"## itos from m.vocab file: just read directly and populate the dictionary\n",
"itos = {}\n",
"with open(f'{model_prefix}.vocab','r') as f:\n",
" for line_num,line in enumerate(f):\n",
" itos[line_num] = line.split(\"\\t\")[0]\n",
" \n",
"stoi = {v:k for k,v in itos.items()}"
]
},
{
"cell_type": "raw",
"metadata": {},
"source": [
"#Based on Tokenizer() class: https://github.com/fastai/fastai/blob/master/fastai/text/transform.py#L87\n",
"class CustomTokenizer():\n",
" '''Wrapper for SentencePiece toeknizer to fit into Fast.ai V1'''\n",
" def __init__(self,sp_processor,pre_rules:ListRules=None,post_rules:ListRules=None):\n",
" self.sp = sp_processor\n",
" self.pre_rules = ifnone(pre_rules, defaults.text_pre_rules )\n",
" \n",
" def __repr__(self) -> str:\n",
" return \"Custom Tokenizer\"\n",
"\n",
" def process_text(self, t:str) -> List[str]:\n",
" \"Processe one text `t` with tokenizer `tok`.\"\n",
" for rule in self.pre_rules: t = rule(t) \n",
" toks = sp.EncodeAsIds(t)\n",
" \n",
" return toks \n",
" \n",
" def _process_all_1(self,texts:Collection[str]) -> List[List[str]]:\n",
" 'Process a list of `texts` in one process'\n",
" return [self.process_text(t) for t in texts]\n",
" \n",
" def process_all(self, texts:Collection[str]) -> List[List[str]]: \n",
" \"Process a list of `texts`.\" \n",
" return self._process_all_1(texts)\n",
" \n",
"mycust_tok = CustomTokenizer(sp)\n",
"#setup Vocab object for use in LM \n",
"# Vocab source: https://github.com/fastai/fastai/blob/master/fastai/text/transform.py#L122\n",
"sp_vocab = Vocab(itos)"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>labels</th>\n",
" <th>text</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>0</td>\n",
" <td>Detective Frank Keller(Al Pacino, in a perfect...</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>0</td>\n",
" <td>This is a VERY good movie. I give it a 10.&lt;br ...</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>0</td>\n",
" <td>I can't say I enjoyed this as much as \"The Big...</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>0</td>\n",
" <td>I sat last night to see this film being played...</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>0</td>\n",
" <td>First of all, I agree that the plot left somet...</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" labels text\n",
"0 0 Detective Frank Keller(Al Pacino, in a perfect...\n",
"1 0 This is a VERY good movie. I give it a 10.<br ...\n",
"2 0 I can't say I enjoyed this as much as \"The Big...\n",
"3 0 I sat last night to see this film being played...\n",
"4 0 First of all, I agree that the plot left somet..."
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"idx = np.random.permutation(len(all_texts))\n",
"cut = int(0.1 * len(idx))\n",
"LM_train_df = pd.DataFrame({'text':all_texts[idx[cut:]], 'labels':[0] * (len(all_texts)-cut)}, columns=['labels','text'])\n",
"LM_valid_df = pd.DataFrame({'text':all_texts[idx[:cut]], 'labels':[0] * cut}, columns=['labels','text'])\n",
"LM_train_df.head()"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [],
"source": [
"PATH = Path(\"./tmp_IMDB_example\")\n",
"\n",
"data = TextLMDataBunch.from_df(PATH, LM_train_df, LM_valid_df, \n",
"# tokenizer=mycust_tok, vocab=sp_vocab, \n",
" text_cols='text', label_cols='labels')"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"60003"
]
},
"execution_count": 13,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"len(data.vocab.itos)"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"['xxunk',\n",
" 'xxpad',\n",
" 'xxbos',\n",
" 'xxfld',\n",
" 'xxmaj',\n",
" 'xxup',\n",
" 'xxrep',\n",
" 'xxwrep',\n",
" 'the',\n",
" '.',\n",
" ',',\n",
" 'and',\n",
" 'a',\n",
" 'of',\n",
" 'to',\n",
" 'is',\n",
" 'it',\n",
" 'in',\n",
" 'i',\n",
" 'this',\n",
" 'that',\n",
" '\"',\n",
" \"'s\",\n",
" '-',\n",
" '\\n \\n ',\n",
" 'was',\n",
" 'as',\n",
" 'with',\n",
" 'for',\n",
" 'movie',\n",
" 'but',\n",
" 'film',\n",
" 'you',\n",
" ')',\n",
" 'on',\n",
" \"n't\",\n",
" '(',\n",
" 'not',\n",
" 'are',\n",
" 'he',\n",
" 'his',\n",
" 'have',\n",
" 'one',\n",
" 'be',\n",
" 'all',\n",
" 'at',\n",
" 'they',\n",
" 'by',\n",
" 'an',\n",
" 'who']"
]
},
"execution_count": 8,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"data.vocab.itos[:50]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## LM Learner"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [],
"source": [
"learn = language_model_learner(data, AWD_LSTM, drop_mult=0.5)\n",
"learn.freeze()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## LM Train"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"LR Finder is complete, type {learner_name}.recorder.plot() to see the graph.\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYwAAAEKCAYAAAAB0GKPAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3Xuc3HV97/HXZ2b2fsnuJpt7QrhEMFzCZQlgKYiXFCjKsaUWj20R9aR4hNa2eoqn59hW7cV6etFSiSmK1QK2IigqhqAVUQEhIQnkJrmASTa3zd6vszszn/PH/HYZlt3NJJnfXDbv5+Mxj535/r6/+X1mMpnPfC+/78/cHRERkWOJFDoAEREpDUoYIiKSFSUMERHJihKGiIhkRQlDRESyooQhIiJZUcIQEZGsKGGIiEhWlDBERCQrsUIHkEuzZs3yJUuWFDoMEZGSsWHDhqPu3pxN3WmVMJYsWcL69esLHYaISMkws19mW1ddUiIikhUlDBERyYoShoiIZEUJQ0REsqKEISIiWVHCEBGRrChhiIhIVkJNGGbWYGYPmtkOM9tuZleM2/4xM9sU3LaYWdLMmoJtr5jZi8E2nVwhIjKBH2w7zOof787LscJuYXwOWOvu5wDLge2ZG939s+5+obtfCHwc+LG7d2RUuSbY3hJynCIiJemxrYf4ys9eycuxQjvT28xmAFcB7wNw92FgeIpd3gM8EFY8IiLTUdfgCA3VZXk5VpgtjNOBNuBeM9toZveYWc1EFc2sGrgW+GZGsQPrzGyDma0KMU4RkZLVNTA8LRJGDLgYuNvdLwL6gTsnqfsO4GfjuqOudPeLgeuAD5vZVRPtaGarzGy9ma1va2vLYfgiIsWvc2CExuryvBwrzISxH9jv7j8PHj9IOoFM5GbGdUe5e2vw9wjwMLBioh3dfY27t7h7S3NzVgsuiohMG+kWRoknDHc/BOwzs7ODorcC28bXC8Y6rga+nVFWY2Z1o/eBlcCWsGIVESlF7k7XwAiNeeqSCnt58zuA+8ysHNgD3GpmtwG4++qgzruAde7en7HfHOBhMxuN8X53XxtyrCIiJaUvniCR8ryNYYSaMNx9EzB+SuzqcXW+AnxlXNke0tNwRURkEl0DIwCl3yUlIiLh6hxIn6kwHQa9RUQkRJ1BCyNfYxhKGCIiJaoraGFMh/MwREQkRBrDEBGRrIyOYTRUqYUhIiJT6BoYoa4yRiyan69yJQwRkRKVz3WkQAlDRKRk5XMdKVDCEBEpWflcRwqUMERESlZnHteRAiUMEZGS1TUwnLcZUqCEISJSkhLJFD1DCXVJiYjI1LoH87ssCChhiIiUpLF1pGrUwhARkSl0D6bP8p6hMQwREZlKZ/9ol5RaGCIiMoV8XwsDlDBERErS2Eq1NdOkS8rMGszsQTPbYWbbzeyKcdvfbGbdZrYpuH0iY9u1ZvYLM9tlZneGGaeISKnpGhwmGjHqKkK90vZrhH2kzwFr3f0mMysHqieo8xN3vyGzwMyiwL8Abwf2A8+Z2SPuvi3keEVESkLnwAgNVWWYWd6OGVoLw8xmAFcBXwJw92F378py9xXALnff4+7DwNeBG8OJVESk9OR7pVoIt0vqdKANuNfMNprZPWZWM0G9K8xss5l938zODcoWAPsy6uwPykREhPQsqXwOeEO4CSMGXAzc7e4XAf3A+LGI54HT3H058M/At473IGa2yszWm9n6tra2k41ZRKQkdA2OTKsWxn5gv7v/PHj8IOkEMsbde9y9L7j/KFBmZrOAVmBRRtWFQdnruPsad29x95bm5uZcvwYRkaKU76XNIcSE4e6HgH1mdnZQ9FbgNYPWZjbXghEbM1sRxNMOPAcsNbPTg8Hym4FHwopVRKTUdA4M53UdKQh/ltQdwH3Bl/4e4FYzuw3A3VcDNwEfMrMEMAjc7O4OJMzsduAxIAp82d23hhyriEhJGBpJMjSSynsLI9SE4e6bgJZxxasztt8F3DXJvo8Cj4YXnYhIaRo7aW8ajWGIiEgICrEsCChhiIiUnNGEoRaGiIhMabRLSi0MERGZksYwREQkKxrDEBGRrHQNDFNZFqGyLJrX4yphiIiUmM6B/K8jBUoYIiIlp2tgOK/X8h6lhCEiUmK61MIQEZFsdA4M05jHS7OOUsIQESkxXQMjeV9HCpQwRERKirunr4WhMQwREZlKbzxBMuUawxARkal19RfmLG9QwhARKSmFOssblDBEREpKe38cgJm1ShgiIjKFtt50wmiuq8j7sZUwRERKyGjCmFU7zRKGmTWY2YNmtsPMtpvZFeO2v9fMXjCzF83sKTNbnrHtlaB8k5mtDzNOEZFS0dYbp74ylveFByHka3oDnwPWuvtNZlYOVI/b/jJwtbt3mtl1wBrgsozt17j70ZBjFBEpGW19cWYVoDsKQkwYZjYDuAp4H4C7DwPDmXXc/amMh88AC8OKR0RkOjjaO0xzAbqjINwuqdOBNuBeM9toZveYWc0U9T8AfD/jsQPrzGyDma2abCczW2Vm681sfVtbW24iFxEpUm198YIMeEO4CSMGXAzc7e4XAf3AnRNVNLNrSCeMP80ovtLdLwauAz5sZldNtK+7r3H3FndvaW5uzukLEBEpNm290zNh7Af2u/vPg8cPkk4gr2FmFwD3ADe6e/toubu3Bn+PAA8DK0KMVUSk6A0OJ+mLJwoyQwpCTBjufgjYZ2ZnB0VvBbZl1jGzxcBDwO+6+0sZ5TVmVjd6H1gJbAkrVhGRUnC0r3DnYED4s6TuAO4LZkjtAW41s9sA3H018AlgJvAFMwNIuHsLMAd4OCiLAfe7+9qQYxURKWpHCnjSHoScMNx9E9Ayrnh1xvYPAh+cYL89wPLx5SIip7Kxs7ynW5eUiIjkVluBu6SUMERESsTR3jhm0FST/4UHQQlDRKRktPXFaaoupyxamK9uJQwRkRJRyHMwQAlDRKRktPXGC3YOBihhiIiUjKMFXBYElDBEREqCu6tLSkREjq03niCeSBXsHAxQwhARKQljV9qrK8yUWlDCEBEpCUfHzvKuLFgMShgiIiWg0Gd5gxKGiEhJaCvwwoOghCEiUhLaeuNEI0ZDVVnBYlDCEBEpAUf74syqLScSsYLFoIQhIlICCn0OBihhiIiUhLa+eEHPwQAlDBGRklDodaRACUNEpOilUk573/D07pIyswYze9DMdpjZdjO7Ytx2M7PPm9kuM3vBzC7O2HaLme0MbreEGaeISDHrGhwhkfKCJ4xQr+kNfA5Y6+43mVk5UD1u+3XA0uB2GXA3cJmZNQF/Tvp64A5sMLNH3L0z5HhFRIpOMZyDASG2MMxsBnAV8CUAdx92965x1W4EvuppzwANZjYP+DXgcXfvCJLE48C1YcUqIlLMxtaRmsZjGKcDbcC9ZrbRzO4xs5pxdRYA+zIe7w/KJit/HTNbZWbrzWx9W1tb7qIXESkSR4tgWRAIN2HEgIuBu939IqAfuDPXB3H3Ne7e4u4tzc3NuX56EZGCm/ZdUqRbBfvd/efB4wdJJ5BMrcCijMcLg7LJykVETjltfXEqYhHqKsIedp5aaAnD3Q8B+8zs7KDorcC2cdUeAX4vmC11OdDt7geBx4CVZtZoZo3AyqBMROSUM3qWt1nhlgWB8GdJ3QHcF8yQ2gPcama3Abj7auBR4HpgFzAA3Bps6zCzTwHPBc/zSXfvCDlWEZGiVAwn7UHICcPdN5GeGptpdcZ2Bz48yb5fBr4cXnQiIqWhrTfOoqbxZyXkn870FhEpYu5Oa9cgCxurCh1KdgnDzM40s4rg/pvN7A/MrCHc0EREpHNghL54gsUl1ML4JpA0s7OANaRnMN0fWlQiIgLA3o4BgJLqkkq5ewJ4F/DP7v4xYF54YYmICLyaMEqphTFiZu8BbgG+G5QV7jqBIiKniH1jLYwSGcMgPd31CuCv3P1lMzsd+Fp4YYmICMDe9gFm1VZQXV7Yk/Ygy2m17r4N+AOA4ES6Onf/TJiBiYhIuktqcRG0LiD7WVJPmFl9sOz488C/mtk/hBuaiIikE0bhxy8g+y6pGe7eA/wG6eXILwPeFl5YIiIynEhxsHuw5BJGLLhOxbt5ddBbRERCdKBrkJQXx5RayD5hfJL04n+73f05MzsD2BleWCIiUkxTaiH7Qe9vAN/IeLwH+M2wghIRkYyEMbM4Eka2g94LzexhMzsS3L5pZgvDDk5E5FS2r2OA8miEOXWVhQ4FyL5L6l7S166YH9y+E5SJiEhI9nYMsLCpikiksNfBGJVtwmh293vdPRHcvgLoeqgiIiEqpim1kH3CaDez3zGzaHD7HaA9zMBERE5l7s7e9tJMGO8nPaX2EHAQuAl4X0gxiYic8roHR+gtkmXNR2U7S+qXwDszy8zsI8A/TbWfmb0C9AJJIOHuLeO2fwx4b0YsbyTd/dVxrH1FRKazYlrWfNTJrGb1xxwjYQSucfejE21w988CnwUws3cAfzTu2t2T7isiMp0V2zkYcHKXaM31sP17gAdy/JwiIiWpGFsYJ5MwPMs668xsg5mtmqySmVUD15K+st9x7SsiMh3t6xhkZk05tRWFX9Z81JSRmFkvEycGA7JZb/dKd281s9nA42a2w92fnKDeO4CfjeuOymrfIJmsAli8eHEWIYmIFL99HQNF1bqAY7Qw3L3O3esnuNW5+zHTnru3Bn+PAA8DKyapejPjuqOy3dfd17h7i7u3NDfr1BARmR6K7RwMOLkuqSmZWY2Z1Y3eB1YCWyaoNwO4Gvj28e4rIjIdJZIpWruKZ1nzUWF2js0BHjaz0ePc7+5rzew2AHdfHdR7F7DO3fuPtW+IsYqIFI2D3UMkU37qJIxgRdvlE5SvHvf4K8BXstlXRORUUIwzpCDELikRETkxxbas+SglDBGRIvPS4V6qyqLMrS+OZc1HKWGIiBSZrQd6OGdeHdEiWdZ8lBKGiEgRcXe2H+jh3Pn1hQ7ldZQwRESKyL6OQXrjCc6dP6PQobyOEoaISBHZeqAbgGXz1MIQEZEpbD3QQzRinD23rtChvI4ShohIEdl2sIezmmupLIsWOpTXUcIQESkiWw90F+WANyhhiIgUjaN9cQ73xFmmhCEiIlPZeqAHQAlDRESmNjpD6tx5xTelFpQwRESKxrYDPSxsrGJGdVmhQ5mQEoaISJHYVqRneI9SwhARKQL98QQvt/ezrEi7o0AJQ0SkKGw/2IM7amGIiMjURmdInbtACUNERKaw7UAPTTXlRXcNjEyhJgwze8XMXjSzTWa2foLtbzaz7mD7JjP7RMa2a83sF2a2y8zuDDNOEZFC23owfYa3WXFdAyNTaNf0znCNux+dYvtP3P2GzAIziwL/Arwd2A88Z2aPuPu2EOMUESmIkWSKlw71ceuvLCl0KFMq1i6pFcAud9/j7sPA14EbCxyTiEgoXmztZjiZ4oKFDYUOZUphJwwH1pnZBjNbNUmdK8xss5l938zODcoWAPsy6uwPykREpp2nd7cDcPkZTQWOZGphd0ld6e6tZjYbeNzMdrj7kxnbnwdOc/c+M7se+Baw9HgOECSiVQCLFy/OVdwiInnz9O52zplbx8zaikKHMqVQWxju3hr8PQI8TLqrKXN7j7v3BfcfBcrMbBbQCizKqLowKJvoGGvcvcXdW5qbm0N4FSIi4Yknkjz3SgdXnDmz0KEcU2gJw8xqzKxu9D6wEtgyrs5cC6YEmNmKIJ524DlgqZmdbmblwM3AI2HFKiJSKBv3dhFPpHjTmbMKHcoxhdklNQd4OMgHMeB+d19rZrcBuPtq4CbgQ2aWAAaBm93dgYSZ3Q48BkSBL7v71hBjFREpiKd3txMxWHF6cY9fQIgJw933AMsnKF+dcf8u4K5J9n8UeDSs+EREisHTu9s5b8EMZlQV5wq1mYp1Wq2IyLQ3OJxk475Orjij+McvQAlDRKRg1v+yg5Gkl8SANyhhiIgUzFO724lFjEuXFP/4BShhiIgUzNO721m+qIGainys0nTylDBERAqgd2iEF1u7eVOJdEeBEoaISEE890oHyZSXzIA3KGGIiBTEU7vaKY9FuPi0xkKHkjUlDBGRAvjxS220nNZIZVm00KFkTQlDRCTP9rT1sfNIHyuXzSl0KMdFCUNEJM/WbTsMwNvPnVvgSI6PEoaISJ6t23qI8xbUs6ChqtChHBclDBGRPDrSM8TGfV2sXFZarQtQwhARyasfbD+CO6w8t7TGL0AJQ0Qkr9ZtO8TipmrOnlNX6FCOmxKGiEie9A6N8NSudlYum0NwraCSooQhIpInP36pjeFkipUlNjtqlBKGiEierNt6mJk15VxSQmd3Z1LCEBHJg+FEih/tOMLb3jiHaKT0uqMg3Gt6Y2avAL1AEki4e8u47e8F/hSwoN6H3H1zNvuKiJSSn+0+Sm88UZKzo0blYxH2a9z96CTbXgaudvdOM7sOWANcluW+IiIl44Gf72VmTTlXLp1V6FBOWEG7pNz9KXfvDB4+AywsZDwiImE40DXID7Yf5t2XLqIiVjqLDY4XdsJwYJ2ZbTCzVceo+wHg+ye4r4hI0Xrg2b048N9XLC50KCcl7C6pK9291cxmA4+b2Q53f3J8JTO7hnTCuPIE9l0FrAJYvLi0/zFEZPoZTqR44Nl9vOXs2Sxqqi50OCcl1BaGu7cGf48ADwMrxtcxswuAe4Ab3b39ePYNtq9x9xZ3b2lubs79ixAROQmPbT3E0b44v3PFaYUO5aSFljDMrMbM6kbvAyuBLePqLAYeAn7X3V86nn1FRErB1575JYuaqrh6aen/oA2zS2oO8HBw+nsMuN/d15rZbQDuvhr4BDAT+EJQb3T67IT7hhiriEjOvXS4l2df7uDj151DpETPvcgUWsJw9z3A8gnKV2fc/yDwwWz3FREpJf/+zC8pj0X4rZZFhQ4lJ3Smt4hICI72xfnmhv3ccME8mmrKCx1OTihhiIiE4B8ff4l4IsXt15xV6FByRglDRCTHdh7u5YFn9/LeyxZzRnNtocPJGSUMEZEc++tHt1NTEeMP3/aGQoeSU0oYIiI59NOdR/nRL9q4/Zqzps3YxSglDBGRHEmmnE9/bxsLG6u45U1LCh1OzilhiIjkyDfW72PHoV7+9NpzqCwr3UUGJ6OEISKSA3vbB/j097azYkkTN1wwr9DhhEIJQ0TkJCWSKf7wPzZiBv/w28sJVqmYdvJxASURkWnt8z/cyca9XXz+PRexsLG0V6SdiloYIiIn4dmXO7jrR7v4jYsX8M7l8wsdTqiUMERETlD3wAh/9B+bWNhYzSdvPK/Q4YROXVIiIicgkUxx+wPPc6R3iP/8/SuorZj+X6fT/xWKiITgM2t38JOdR/nb3zifixY3FjqcvFCXlIjIcXro+f38609e5pYrTuPmEr9O9/FQwhAROQ6b93Vx50MvcvkZTfyfG5YVOpy8UsIQEcnS83s7ufUrzzG7roIvvPcSyqKn1lfoqfVqRURO0NotB3nPmmeoq4zxtQ9cNu0WFsxGqAnDzF4xsxfNbJOZrZ9gu5nZ581sl5m9YGYXZ2y7xcx2BrdbwoxTRGQqX/rpy3zovudZNr+ehz70Jk6fVVPokAoiH7OkrnH3o5Nsuw5YGtwuA+4GLjOzJuDPgRbAgQ1m9oi7d4YR4Hc2HyAWMarKo1SXx2isLuOs2bXT9vT+TO19cXYd6WN3Wz9DI0lm1pbTVFPOzJoKzpxdQ0Xs+BZQc3eAon3vkimne3CE/niC3qEEA8MJHIiYETGIRoxYJEJZ1IhFI0TNGH0pZpBKQdKdlDt9QwkOdg9xqHuQQz1xhkaSJFNOIuXEIsa8hkoWNVazsLGKBY1VzKqpIBIpzvdFJtbZP8xffmcr39p0gGvPncs/3XzhtFxUMFuFnlZ7I/BVT3/LPGNmDWY2D3gz8Li7dwCY2ePAtcADYQTx0W9sJp5IvaZsYWMVv37BPG44fz7nLagv2i/A49XeF+eJX7TxXzuO8PSedjr6hyetWxY1ls2r58JFDZw1u5aRpDOUSDI0kqKzf5jDPUMc7o1ztDfO4EiSoeAWi0aYN6MyuFVRFjUSSWck5SSSqaBeiqFEkspYlDn1Fcypr2ROfSXzG6pY0JD+gq2rjNHWG08fpyfOcDJFxNJf7u7QH0/QMzRC71CCvniCgeEkA8PpvwaUxSKURyOk3DnYNURr1yCHeoZIpjzn72tZ1KgqixKLRoiYkUil6BoYeV2dOfWVzJ9RxcKmKk5rquG0mdUsaKyisbqchuoyGqrKiGXRL55KOcPJFBWxyLT5bBabtVsO8n++tZWugWE+8ral3PGWpURP8YQfdsJwYJ2ZOfBFd18zbvsCYF/G4/1B2WTlr2Nmq4BVAIsXn9j0tsc+chUDw0kGR9JfNge6Bvn+lkN86Scv88Uf72FRUxXXnzeP68+fxwULZ+T8P2gy5fQMjlBVHs36C8Dd6RlK0NY7RPdggqGRJIPDSQZGkvTHE/QFX6I9QyN09A/T0T9MW2+cXxzuxR1m11XwlnNm88Z59ZzZXMNZs2upKY/RHtQ90jvEi63dbNrbxTc27GdgOPma4zdUlzGnrpLZ9RWcOauG6ooolbEolWVRhpMpDnYPcbBrkGdf7iDlTjRilEUjxCJGZVmUyrIItRUxBoeTbNjbmU4I45L28agpj1JdEaOmPDr2C3AkmWIk6TjOvPoqVpzexPyGSmbVVlBbEaOuMkZ1eSzdcnBIuZNMOolUer9EKkUylX6vHcAhEjGikXTSqimPMTdIjE015a/7d+uLJ9jfOcC+jkEOdg9yoCvdGjnQNcRTu9p5qKd1wtdSEYtQHotQEYtQFiS8ZCod30gyRTyRGnuvqsujzG+oGkvQjdXl1FeV0VBdRlN1Oc11FcyqraC5roLq8qiSSxYOdg/y6e9u53svHuTc+fV89f0rWDa/vtBhFYWwE8aV7t5qZrOBx81sh7s/mcsDBEloDUBLS8sJ/XRcMkF/5G9fupiugWHWbT3Mo1sO8qWfvswXn9zD/BmVNNWWk0g6yVT6i7C5roJ5MyqZW19JLBqhfzjBQDzJSDLFufPrufyMmWNdXK1dg/xs51Ge2n2UV9oHONwzxJHe+Niv3mjEqCmPUh6LjH2JpVJOWTT95ZEud9p6469rFU2ktiJGU026m2l+QxXXnTePt75xNsvm1U/YPdKYMZB3wwXpdXESyRQd/cNUxKJUlEVC+VXr7nQOjHCga5D9nYO0dg3SN5Rgdn0Fc+ormF1XSWVZFHdntIFQUxGlrrKM2opYUf7yq62Icc7ces6ZO/GXzdBIkv2dA7R2DdE1MEzXwAidA8MMDifTSSGZYiSRSneXBYkqFolQWRYNkonR0Z9+zw50D/KLQ710DY5MmngrYpGxz0JzXcVYa25hYxXzZqSTzuz6iuPuhpwuhkaSrHlyD3c/sZukOx9d+QZ+/+ozT7mZUFMJNWG4e2vw94iZPQysADITRiuwKOPxwqCslXS3VGb5E2HGOpGG6nLefeki3n3pIroHRnh8+2H+a8dhhkZSwS9mYyTpHOkZ4qXDvbT1xkk5lMciY8sEfP25dENpZk36l9/LR/sBmFVbwTlz6zjrrFljvwyHEunWQX88yXAyRTToVzez4Ndy+pelWTpJNddWMLu+gvqqMqrLolSVR6kqi1JbGaOmIkZNeW6+SGPRCLPrK0/6eaZiZmNfZuctmBHqsYpFZVmUs2bXcdbsupw+79BIku7BEdr7hmnrS3cZtvXF6egfpr1vmI7+OEd642ze10XnuG4zYOzfIT2WVU5FLBK0wNNdjouaqrlgwQzOX9jAufPrS75Pf2A4wXc3H+RzP9xJa9cg158/l49f90YWNU3fVWdPlI0OUub8ic1qgIi79wb3Hwc+6e5rM+r8OnA7cD3pQe/Pu/uKYNB7AzA6a+p54JLRMY3JtLS0+Pr1r5uMlTeJZAqHsV8k7s6+jkGe2dPO03va6R0a4fIzZvKrS5t5w5xTY1Bdilt/PMGBYGznYPcQh7uHONQzNNaN2dE/TDyRoro8/YOkLBphT1s/R/viAEQMFjVVs3R2LWfOrmXJzJqxbrp59VXUV8WK9nO+pbWbrz+3l29vPEBvPMGyefX83xuWccWZMwsdWl6Z2QZ3b8mmbpgtjDnAw8GHJQbc7+5rzew2AHdfDTxKOlnsAgaAW4NtHWb2KeC54Lk+eaxkUQzGD1aaGYtnVrN4ZjXvvnTRJHuJFE5NRYylc+pYOif7Vo67c7gnzub9XWw90MPuI33sPNLLj19qYyT52h+gZVFjZk0FM2vLmVtfydlz6zh7bh3nzK1nyazqvHd/7W0f4JHNrTyy+QAvHe6jIhbh18+fx80rFnPpksaiTW7FIrQWRiEUuoUhcipLJFMc7o1zqHswmG48RHv/MO19cdr7htnfOcjutj4SqdGp1zCnrpKFjVUsnlnN8oUNXLS4gXPm1lMey924QVtvnO+9cIBvbz7Axr1dAFy6pJF3Lp/PO5cvYEZ1Wc6OVYqKpYUhIqeQWDSSnhLdUDVpneFEij1H+9hxsJdftg+wr3OAfR0D/GTnUR56Pj1rrCIW4Q1z6lg8s5rTmqo5bWY1c2dUjU1+aKwum7Il0BdPsLW1mxdbu3ly51F+tusoyZTzxnn13HndObxj+fwpY5TJKWGISN6UxyITzhxzdw52D7Fxbxcb93by0pE+trZ289iWQ2MtklERI5iaHaUyFqEslj73xSw9lXp/5yCjHSeLm6q57eozuPHCBbzhOLrdZGJKGCJScGbG/IYq5jekT5gdlQjO6Rmdfn64Z4j2vuH0yZ/BSaSJZGpsCrqZcdPFizh/YT3nLZjB7LpwZ/edapQwRKRoxaIRFjVVa4prkdAZKSIikhUlDBERyYoShoiIZEUJQ0REsqKEISIiWVHCEBGRrChhiIhIVpQwREQkK9Nq8UEz6wZ2TrBpBtCd5ePR+xOVzQImuz75ZMYfK9vtE5VPFNNk908m5qniyja+Uol5ovJS/HxkE3PmfX0+st8+3T8fS909u4vQuPu0uQFrsimf6vHo/UnK1ucqpuONebKYjhX/icR8onGXYszT5fORTcyFfq/1+Sj+z8exbtOtS+o7WZZP9fg7U5TiKMGOAAAHWUlEQVTlMqZjbZ+ofLKYjhX/iTiRuEsx5onKS/HzkU3Mmff1+ch++6n0+ZjStOqSCpuZrfcs140vFoo5f0oxbsWcP6Uad6bp1sII25pCB3ACFHP+lGLcijl/SjXuMWphiIhIVtTCEBGRrJyyCcPMvmxmR8xsywnse4mZvWhmu8zs85ZxvUgzu8PMdpjZVjP7u2KP2cz+wsxazWxTcLu+2GPO2P4nZuZmNit3EY89dxjv9afM7IXgfV5nZvNLIObPBp/nF8zsYTNrKIGYfyv4/5cys5yNGZxMrJM83y1mtjO43ZJRPuXnvqBOZHradLgBVwEXA1tOYN9ngcsBA74PXBeUXwP8AKgIHs8ugZj/AvhoKb3PwbZFwGPAL4FZpRA3UJ9R5w+A1SUQ80ogFtz/DPCZEoj5jcDZwBNAS6FjDeJYMq6sCdgT/G0M7jdO9bqK4XbKtjDc/UmgI7PMzM40s7VmtsHMfmJm54zfz8zmkf6P/4yn/3W/Cvy3YPOHgL9193hwjCMlEHOoQoz5H4H/BYQyCBdG3O7ek1G1JtexhxTzOndPBFWfARaWQMzb3f0XuYzzZGKdxK8Bj7t7h7t3Ao8D1xby/2o2TtmEMYk1wB3ufgnwUeALE9RZAOzPeLw/KAN4A/CrZvZzM/uxmV0aarRpJxszwO1Bl8OXzawxvFDHnFTMZnYj0Orum8MOdJyTfq/N7K/MbB/wXuATIcY6Khefj1HvJ/2LN2y5jDls2cQ6kQXAvozHo/EXy+uakK7pHTCzWuBNwDcyugwrjvNpYqSbmJcDlwL/aWZnBL8Uci5HMd8NfIr0r91PAX9P+oshFCcbs5lVA/+bdFdJ3uTovcbd/wz4MzP7OHA78Oc5C3KcXMUcPNefAQngvtxEN+lxchZz2KaK1cxuBf4wKDsLeNTMhoGX3f1d+Y41V5QwXhUButz9wsxCM4sCG4KHj5D+gs1sli8EWoP7+4GHggTxrJmlSK8f01asMbv74Yz9/hX4bkixjjrZmM8ETgc2B/9JFwLPm9kKdz9UxHGPdx/wKCEmDHIUs5m9D7gBeGtYP34y5Pp9DtOEsQK4+73AvQBm9gTwPnd/JaNKK/DmjMcLSY91tFL41zW5Qg+iFPIGLCFjAAt4Cvit4L4ByyfZb/yg1PVB+W3AJ4P7byDd5LQij3leRp0/Ar5e7O/zuDqvEMKgd0jv9dKMOncAD5ZAzNcC24DmMN7jMD8f5HjQ+0RjZfJB75dJD3g3Bvebsv3cF+pW8AAK9sLhAeAgMEK6ZfAB0r9c1wKbg/8kn5hk3xZgC7AbuItXT4AsB/492PY88JYSiPlrwIvAC6R/uc0r9pjH1XmFcGZJhfFefzMof4H0+j0LSiDmXaR/+GwKbrme2RVGzO8KnisOHAYeK2SsTJAwgvL3B+/vLuDW4/ncF+qmM71FRCQrmiUlIiJZUcIQEZGsKGGIiEhWlDBERCQrShgiIpIVJQyZ1sysL8/Hu8fMluXouZKWXtl2i5l951grxZpZg5n9z1wcW2QimlYr05qZ9bl7bQ6fL+avLsYXqszYzezfgJfc/a+mqL8E+K67n5eP+OTUoxaGnHLMrNnMvmlmzwW3XwnKV5jZ02a20cyeMrOzg/L3mdkjZvZfwA/N7M1m9oSZPWjpa0XcN3rNgqC8JbjfFyw2uNnMnjGzOUH5mcHjF83s01m2gp7m1cUXa83sh2b2fPAcNwZ1/hY4M2iVfDao+7HgNb5gZn+Zw7dRTkFKGHIq+hzwj+5+KfCbwD1B+Q7gV939ItIryf51xj4XAze5+9XB44uAjwDLgDOAX5ngODXAM+6+HHgS+B8Zx/+cu5/Pa1cmnVCwjtJbSZ+JDzAEvMvdLyZ9DZa/DxLWncBud7/Q3T9mZiuBpcAK4ELgEjO76ljHE5mMFh+UU9HbgGUZK4zWByuPzgD+zcyWkl69tyxjn8fdPfNaCM+6+34AM9tEeo2hn447zjCvLua4AXh7cP8KXr3Gwf3A/5skzqrguRcA20lfMwHSawz9dfDlnwq2z5lg/5XBbWPwuJZ0AnlykuOJTEkJQ05FEeBydx/KLDSzu4Afufu7gvGAJzI29497jnjG/SQT/18a8VcHCSerM5VBd78wWNL9MeDDwOdJX0ujGbjE3UfM7BWgcoL9Dfgbd//icR5XZELqkpJT0TrSq8UCYGajy1PP4NWlpN8X4vGfId0VBnDzsSq7+wDpS7r+iZnFSMd5JEgW1wCnBVV7gbqMXR8D3h+0njCzBWY2O0evQU5BShgy3VWb2f6M2x+T/vJtCQaCt5Felh7g74C/MbONhNv6/gjwx2b2AumL63Qfawd330h6ldv3kL6WRouZvQj8HumxF9y9HfhZMA33s+6+jnSX19NB3Qd5bUIROS6aViuSZ0EX06C7u5ndDLzH3W881n4ihaYxDJH8uwS4K5jZ1EWIl8QVySW1MEREJCsawxARkawoYYiISFaUMEREJCtKGCIikhUlDBERyYoShoiIZOX/A7O5J7R6Av93AAAAAElFTkSuQmCC\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"lr_find(learn)\n",
"learn.recorder.plot()"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"Total time: 20:17 <p><table style='width:375px; margin-bottom:10px'>\n",
" <tr>\n",
" <th>epoch</th>\n",
" <th>train_loss</th>\n",
" <th>valid_loss</th>\n",
" <th>accuracy</th>\n",
" <th>time</th>\n",
" </tr>\n",
" <tr>\n",
" <th>0</th>\n",
" <th>4.283346</th>\n",
" <th>4.043954</th>\n",
" <th>0.292471</th>\n",
" <th>20:17</th>\n",
" </tr>\n",
"</table>\n"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"learn.fit_one_cycle(1,1e-2)"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEKCAYAAAD9xUlFAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3Xd8VuX9//HXh5AQSEJYYYklDNmbyBBliCKCxUWtqG3RKtVa9VtqLS4c1YrVuvprbdUK1Vaoo7gQRVDqZASZskdQhhACskIISa7fH+fkkJAdcudOyPv5eOTByVn354q39+c+13XO5zLnHCIiIgC1wh2AiIhUHUoKIiISUFIQEZGAkoKIiASUFEREJKCkICIiASUFEREJKCmIiEhASUFERAK1wx1AWTVp0sQlJiaGOwwRkWplyZIle5xzCSXtV+2SQmJiIsnJyeEOQ0SkWjGzraXZT91HIiISUFIQEZGAkoKIiASq3ZiCiJw6jh07xrZt28jIyAh3KKeM6OhoWrVqRWRkZLmOV1IQkbDZtm0bcXFxJCYmYmbhDqfac86RlpbGtm3baNOmTbnOoe4jEQmbjIwMGjdurIRQQcyMxo0bn9SVl5KCiISVEkLFOtm/Z41JCotT9vLo+2vR9KMiIkWrMUnhjSXbeHb+JnYdOBruUESkCkhLS6NXr1706tWL5s2bc9pppwW/Z2Zmluoc1157LevWrQtxpJWrxgw0t24cA8DBjGM0j48OczQiEm6NGzdm2bJlANx///3ExsZy++2359vHOYdzjlq1Cv/+PHXq1JDHWdlqzJVCq4Z1wx2CiFQDGzdupEuXLlx99dV07dqVnTt3MmHCBJKSkujatSsPPvhgsO/ZZ5/NsmXLyMrKokGDBkyaNImePXsycOBAdu/eHcZWlF+NuVKIqOUNvuRoSEGkSnrgna9ZveNAhZ6zS8v63PfDrmU+bu3atbz00kskJSUBMGXKFBo1akRWVhbDhg1j7NixdOnSJd8x+/fvZ8iQIUyZMoWJEyfy4osvMmnSpAppR2WqMVcKfk4gW1lBRErQrl27ICEATJ8+nT59+tCnTx/WrFnD6tWrCxxTt25dLrzwQgD69u1LSkpKZYVboWrMlUIty71SUFIQqYrK840+VGJiYoLlDRs28PTTT7No0SIaNGjANddcU+hzAFFRUcFyREQEWVlZlRJrRasxVwrHu4+UFESk9A4cOEBcXBz169dn586dfPDBB+EOKaRq3JWCuo9EpCz69OlDly5d6NSpE61bt2bQoEHhDimkrLo9zJWUlOTKM8nO/9an8rMXF/HGTQPp27pRCCITkbJas2YNnTt3DncYp5zC/q5mtsQ5l1TEIYGa030UXCmEORARkSqsxiSF3LuPNKYgIlK0mpMUcgeaNaYgIlKkGpMUcu8+ytaVgohIkWpMUjj+nEKYAxERqcJqUFLw/lX3kYhI0WpMUgi6j5QURMQ3bNiwAg+jPfXUU9x0001FHhMbGwvAjh07GDt2bKH7DB06lJJunX/qqadIT08Pfh81ahTff/99aUMPmRqTFFTmQkRONG7cOGbMmJFv3YwZMxg3blyJx7Zs2ZLXX3+93K99YlJ47733aNCgQbnPV1FqXFL4fOOeMEciIlXF2LFjmTVrVjCpTkpKCjt27KB3794MHz6cPn360L17d956660Cx6akpNCtWzcAjhw5wpVXXknnzp259NJLOXLkSLDfTTfdFJTdvu+++wB45pln2LFjB8OGDWPYsGEAJCYmsmeP9/n0xBNP0K1bN7p168ZTTz0VvF7nzp254YYb6Nq1KyNGjMj3OhUlpGUuzCwFOAhkA1knPk1n3mSiTwOjgHRgvHPuq1DEsuN774/3zy+38sDF3ULxEiJyMmZPgu9WVuw5m3eHC6cUublRo0b069eP2bNnc/HFFzNjxgyuuOIK6taty8yZM6lfvz579uxhwIABjBkzpsj5j5999lnq1avHmjVrWLFiBX369Am2PfzwwzRq1Ijs7GyGDx/OihUruPXWW3niiSf4+OOPadKkSb5zLVmyhKlTp7Jw4UKcc/Tv358hQ4bQsGFDNmzYwPTp03n++ee54ooreOONN7jmmmsq5m/lq4wrhWHOuV5FPF59IXCG/zMBeDZUQTSJqxOqU4tINZa3Cym368g5x1133UWPHj0477zz2L59O7t27SryHJ988knw4dyjRw969OgRbHv11Vfp06cPvXv35uuvvy607HZen332GZdeeikxMTHExsZy2WWX8emnnwLQpk0bevXqBYSuPHe4C+JdDLzkvAJMC8ysgZm1cM7trOgX6nW611c3tm+rij61iFSEYr7Rh9LFF1/Mr3/9a7766ivS09Pp27cv06ZNIzU1lSVLlhAZGUliYmKh5bJLsmXLFh5//HEWL15Mw4YNGT9+fLnOk6tOneNfbiMiIkLSfRTqKwUHzDGzJWY2oZDtpwHf5vl9m78uJJrXj+b1Jdt0W6qIBGJjYxk2bBjXXXddMMC8f/9+mjZtSmRkJB9//DFbt24t9hyDBw/mlVdeAWDVqlWsWLEC8Mpux8TEEB8fz65du5g9e3ZwTFxcHAcPHixwrnPOOYc333yT9PR0Dh8+zMyZMznnnHMqqrklCnVSONs51wevm+hmMxtcnpOY2QQzSzaz5NTU1HIH890BL0M/Nmdduc8hIqeecePGsXz58iApXH311SQnJ9O9e3deeuklOnXqVOzxN910E4cOHaJz585MnjyZvn37AtCzZ0969+5Np06duOqqq/KV3Z4wYQIjR44MBppz9enTh/Hjx9OvXz/69+/P9ddfT+/evSu4xUWrtNLZZnY/cMg593iedX8H5jvnpvu/rwOGFtd9VN7S2QCJk2YFyylTRpfrHCJScVQ6OzSqZOlsM4sxs7jcZWAEsOqE3d4GfmqeAcD+UIwnnOiaAT8I9UuIiFRLoew+agZ8ZmbLgUXALOfc+2Z2o5nd6O/zHrAZ2Ag8D/wyhPEwtGMCAJt2Hw7ly4iIVFshu/vIObcZ6FnI+r/lWXbAzaGK4UR//0lfOt7zPl9uTuPzjXsY1L5JyQeJSEg554q8/1/K7mSHBGrME80AdWpHBMsPzVoTxkhEBCA6Opq0tLST/iATj3OOtLQ0oqOjy32OcD+nUOma14/muwMZrNl5INyhiNR4rVq1Ytu2bZzMXYWSX3R0NK1alf95rBqXFD773TCunbaYr3coKYiEW2RkJG3atAl3GJJHjeo+AqgdUYsBbRuz93AmiZNmsVrJQUQkUOOSAkC7hJhgefaqkN8BKyJSbdTIpNC+aVywvHN/+euQiIicampoUohl+g0D6NKiPrsOKCmIiOSqkUkBYGC7xpzeqG4wz4KIiNTgpADQuUV9Nu85zOGjWeEORUSkSqjRSaFNkxicg880RaeICFDDk0LbJrEA/OLlJRzNyg5zNCIi4Vejk0K30+oHyyqSJyJSw5OCmTH9hgEArNulh9hERGp0UgDo/QNv7uZf/2d5mCMREQm/Gp8UoiMjSt5JRKSGqPFJAeCKJK+i4P70Y2GOREQkvJQUgBFdmgOwYEtamCMREQkvJQXgzMRGADz/yeYwRyIiEl5KCkB8vUgAkrfuI+OYnlcQkZpLScHXpolXTvthTdMpIjWYkoJv7sQhALy1bHuYIxERCR8lBV9ELQPgcKa6j0Sk5lJSyOPq/j8gJioC51y4QxERCQslhTzaJsRyICOLtMOZ4Q5FRCQslBTyaOvP3bxy+/4wRyIiEh5KCnl0bu5VTZ3z9a4wRyIiEh5KCnk0j4+mYb1I9qn7SERqKCWFE/Rt3ZCUNM2tICI1U8iTgplFmNlSM3u3kG0/MLOP/e0rzGxUqOMpyemN6vHN3nTdgSQiNVJlXCncBhT1mPA9wKvOud7AlcBfKyGeYrVuVI/0zGz2HFIXkojUPCFNCmbWChgNvFDELg7InRMzHtgRynhKo3Vj7w6kr3foDiQRqXlCfaXwFHAHkFPE9vuBa8xsG/AecEuI4ylR+6axAIyfupjNqYfCHI2ISOUKWVIws4uA3c65JcXsNg6Y5pxrBYwCXjazAjGZ2QQzSzaz5NTU1BBF7Dm9Ub1g+a6ZK0P6WiIiVU0orxQGAWPMLAWYAZxrZv86YZ+fA68COOe+BKKBJieeyDn3nHMuyTmXlJCQEMKQPSlTRgOwYPNedh3ICPnriYhUFSFLCs65O51zrZxziXiDyB855645YbdvgOEAZtYZLymE9lKgjOas1oNsIlJzVPpzCmb2oJmN8X/9DXCDmS0HpgPjXRW5F/TdW84G4N43V4U5EhGRylO7Ml7EOTcfmO8vT86zfjVeN1OV0+20+HCHICJS6fREczFuHtYOgJ37j4Q5EhGRyqGkUIykxEYADHzkozBHIiJSOZQUijG0w/E7nQ4fzQpjJCIilUNJoRhmxhA/MWzSg2wiUgMoKZTg3ou6ADB/XZW6U1ZEJCSUFErQurH3hPMTH64PcyQiIqGnpFCCyIjjf6LsnCrxCIWISMgoKZTCI5d1B2D7Pt2aKiKnNiWFUujQLA6ADbsPhjkSEZHQUlIohdxy2j//ZzJHs7LDHI2ISOgoKZRCfN3IYHnmV9vDGImISGgpKZTSvN8MAeCTDbo1VUROXUoKpdQuwetCem/ld2GOREQkdJQUyuCKpFYAHMw4FuZIRERCQ0mhDEZ2aw7Amp26C0lETk1KCmXQtaU3x8LXO/aHORIRkdBQUiiDpnF1aBIbxdc7DoQ7FBGRkFBSKAMzo11CLFvTDoc7FBGRkFBSKKP4upEsTtlHVnZOuEMREalwSgpltGKbN56g5xVE5FSkpFBGf7m6NwBphzLDHImISMVTUiijHq0aAPDmMpW7EJFTj5JCGeXOr/D5xjQOad5mETnFKCmUQ2SEAXDPzJVhjkREpGIpKZTDqgcuAODNZTtIz9TVgoicOpQUyqFO7QhioiIA+HD1rjBHIyJScUqVFMysnZnV8ZeHmtmtZtYgtKFVbV9NPp/ICGO1nm4WkVNIaa8U3gCyzaw98BxwOvBKyKKqBurUjqBdQiwbdx8KdygiIhWmtEkhxzmXBVwK/Nk591ugRWkONLMIM1tqZu8Wsf0KM1ttZl+bWbVKNO2bxrL2O1VMFZFTR2mTwjEzGwf8DMj9cI8sZv+8bgPWFLbBzM4A7gQGOee6Av9XynNWCfuPHGP790e4dfrScIciIlIhSpsUrgUGAg8757aYWRvg5ZIOMrNWwGjghSJ2uQH4i3NuH4Bzbncp46kSrhnQGoC3l+8IcyQiIhWjVEnBObfaOXerc266mTUE4pxzj5bi0KeAO4Ciqsd1ADqY2edmtsDMRha2k5lNMLNkM0tOTa06NYcu6No8WF6csjeMkYiIVIzS3n0038zqm1kj4CvgeTN7ooRjLgJ2O+eWFLNbbeAMYCgwzj9vgbuanHPPOeeSnHNJCQkJpQm50jwzzquF9NKXW8MciYjIyStt91G8c+4AcBnwknOuP3BeCccMAsaYWQowAzjXzP51wj7bgLedc8ecc1uA9XhJotoY07MlAO8s36Fy2iJS7ZU2KdQ2sxbAFRwfaC6Wc+5O51wr51wicCXwkXPumhN2exPvKgEza4LXnbS5lDFVOe3vns2mVN2iKiLVV2mTwoPAB8Am59xiM2sLbCjPC5rZg2Y2xv/1AyDNzFYDHwO/dc6llee84fTi+KRg+Zl55fqziIhUCeacC3cMZZKUlOSSk5PDHUYBRzKz6Tz5fQBSpowOczQiIvmZ2RLnXFJJ+5V2oLmVmc00s93+zxv+7abiqxsVwVntGgOQmaWxBRGpnkrbfTQVeBto6f+846+TPNomxAAw7YstYY5ERKR8SpsUEpxzU51zWf7PNKBq3RtaBfz2gk6ApuoUkeqrtEkhzcyu8esYRZjZNUC1GxAOtfi6XuWP5z6ttjdQiUgNV9qkcB3e7ajfATuBscD4EMVUrXU/LR7n4Pt0XS2ISPVT2jIXW51zY5xzCc65ps65S4DLQxxbtTSkg9er9pN/LApzJCIiZXcyM69NrLAoTiETz+8AwNa0w2GORESk7E4mKViFRXEKqVXL6PODBhzIyCJx0ix2fH8k3CGJiJTaySSF6vXUWyWadGHnYPn9Vd+FMRIRkbIpNimY2UEzO1DIz0G85xWkEP3aNKJfYiMAlmzdF+ZoRERKr9ik4JyLc87VL+QnzjlXu7KCrI7+84sBAMxauZPESbPIztGFlYhUfSfTfSTFMMs/5NLurveY87W6kkSkalNSCKHXbxxIndrH/8QTXi5uviERkfBTUgihpMRGrHvoQhLi6gTrnp2/KVg+lp3DkczscIQmIlIolc6uBKkHj/LFpj3cNmNZsG7ShZ34YlMan6xPValtEQm5Ci2dLScnIa4OP+yR/2atKbPX8sn6VAAOH80KR1giIgUoKVSSWrWMV27oX+i2b/amV3I0IiKFU1KoRGe1a8KWR0ax7qGR+dYrKYhIVaGkUMnMjDq1I0iZMpplk88H4FslBRGpIpQUwii+biR1IyPYdSAj3KGIiABKCmFlZuQ4x/OfbiFx0iyOZWtuZxEJLyWFMDuvc7Ng+fk8M7aNePJ/TP1ccz2LSOVSUgizX/vzLwD88f11JE6axb8XbmX9rkM88M5qXk3+NozRiUhNo6QQZu2bxjJ34uB86+6euSpYvuP1FZUdUrWWnePYf+RYuMMQqbaUFKqA9k3jmDC4bZHbD2Sc2h9yS7bu490VO076PEcys2l313v0fGAOew4drYDIRGoeJYUqon60V4n8txd05CcDWjP+rEReu3EgAF9sTAtnaCGRnnn8Ke7Ln/2CX72ylPKWXHl3xQ5SDx6l8+T3g3Uzv9p+0jGK1ESaE6GKuP6ctnRtGc/QjglB2e3cYnnTF33DyG7NwxlehXp5wVbufXMVC+4cTuPYqGD95j2HaZcQW6Zzbdx9iF+9srTA+offW8OQjgl0aBZ30vGK1CS6UqgioiMjGNapab55GOpGRQDwv/Wp7E8vexfS0axsXln4DVlV7FbXe9/0xkwGPDKPM+6eHaxfuHlvqc/xxaY9JE6axXlP/C/f+mnXnhksj3jyE+at2VXqcx7MOMYXG/eUen+RU1HIk4KZRZjZUjN7t5h9LjczZ2YlVvCraVrERwPQ88E5HCzF2MITH65n/rrdfLs3nY73vM9dM1cyc2nBrpRv96bzxIfrKyxhHM3KPuky4Iu2FN9NNu3zLXy3P4MnP1zPVc8vLHSfoR2bsubB42VESjuHRdqho3S/fw5XvbCQ1TsOlD5okVNMZVwp3AasKWqjmcX5+xT+f3kN98ZNZwXL3e+fw+6DRT/9nJmVwzPzNjB+6mIefX9tsP7bfUcK7Pv0vA08M28DryZvy7f+QMYx/jp/Y5HJIis7h6tfWMDCzcc/wPenH6PjPe/TefL7pB7MP8D7+3dXkzhpFv9Z/A2Jk2aROGkWAOPPSuTyPq0A6HZafS7o2ow3lxU92Pz6km3c/85qBjwyj6fnbSh0n7kThwDeFdbyySMA726kkU99UuR5d3x/hL/O30hynrm0Rz3zab4xD5GaJKRjCmbWChgNPAxMLGK33wOPAr8NZSzVVcsGdZnz68GMeNL7YFv6zfdc0PX4+MKuAxkYMH99Kj1bNQjWv7tiZ7D8zLwN4BwNY6KoXctYnLKPt5d7H8B3zVzJVf1/EOz76Oy1/HvhN6QePMp9P+xaIJ5VOw7w+cY0Pt+YFswD8Zf5G4Ptf5qzjimX9wDgzaXb+cdn3gN4v3tjZb7z/GZEB+KiI/nTFT0BmPCSN0fG3/63iesGtSEqz4x1CzencftrywvE8qth7bn9go6k7DnMh6t30S4hJtgWXy+Sjs3iWLfrIGu/O8j+I8eIrxtZ4BxnTfmowDqALpM/YN1DI6lTO6LQ7SKnqlBfKTwF3AEU+rXTzPoApzvnZhV3EjObYGbJZpacmpoagjCrtg7N4vjbNX0A78PeOUdOjmPh5jT6/2Ee/f4wjzteX8EFJ3wj7pfYiJ6ne4nimY828sA7q7n3ra+DhJDraJbX7ZOZlRNUbH1jiXcFkZPj6PfwXP40Zx1Ltu7jgXe+Do5LPXiU+et289wnx5/EnrHYe9ju273p/N9/jk8qlOuZcb1Zef8I4qLzf0DfP8ZLQFNmr+XO/3oJJDvHMXvlTn783IIC53nyxz2Z6D/4l9gkhhsGty0wL/aMCQOI8cdlej4wJ9825xx3zcyfqE7U8Z73+c/ib/J1iy3Zuo9rpy4i45i3Lj0zq9x3TYlURSG7UjCzi4DdzrklZja0kO21gCeA8SWdyzn3HPAceDOvVWyk1cPIbi1oEluH2St30sb/UP9x0unFHvOfXwzAzHhm3gae+HB9ge2/Pq8DT85dz4Zdh8jMzuGyv34RbGscWwfnHMlb97H74FH+/NFG/vzRxnzHn/nw3Hy/t28ay8bdh3hr2fZ8s8zlmnRhJ8b0bFlgPXhXRLne+GobaYePMn9d/i8Avxjclr/7CWh095bUqpU/CZyoYUwUS+49n073ereqPjxrNXeP7kLKnsN89c0+Xln4DQCX9GrJm8t2MKp7c+4a1ZmzH/04OMfv3ljJmp0Hue+HXbj3rVX8a4F3TKd732f8WYlM+yIFgMV3n5dv2lWR6ipk03Ga2SPAT4AsIBqoD/zXOXeNvz0e2AQc8g9pDuwFxjjnipxvszpOx1lRrpu2mI/W7g5+H9m1Oe9//V2B/dY9NJLMrJx838aHPPYx+w5ncknv03hgTFfMjO/2ZzDgkXnFvmZcdG0OZpTcv27mPWPxx/fX5Vv/yvX92XM4k+ycHC7t3arYc9zx+vICYxy5po4/k2GdmpKd46hlFLgqKM7dM1fybz8BzJ04mPOeyH9FtfkPo8jKcfm6rIBg/KNVw7psK2RcJq/rBrVh8g+7FFj/9NwNPDnXS8g9T2/AWzcPKnXcIhWptNNxVsoczf6Vwu3OuYuK2We+v0+xn/g1OSls2HWQ858sOGi64M7hHDqaxUdrd/HDni1pEV+3kKMLl/vBl2toxwR+Mbgd454v2GWTa9UDF9Dtvg+C32Pr1GbuxCHUjYrI103z7i1n0+20+FLHAvnb2CI+moFtG7P9+yO89PN+5e7f/z49k14PfgjAHy/vwR1vHC8dUtz82LsPZtDv4YJJ8+z2TfiskFtXR3RpxjPjepN2OJPTGtQlPTOLLpM/yLdPeefjds6VKREW5fDRLCIjahVIgHLqK21SqPSH18zsQSDZOfd2Zb92dXdGs7igiybXxb1a0ty/bbV907I9+AXe3U2XP3u822jatf0KlPC+pFdLImrVoklsFP3bNiK2Tm2mXXsmf/5oI0u27uPPV/UOYjivc1PmrtnN8vtGFDqwW5o2/jjpdDKysnn6yt5lPr4wDepFMXX8mVw7bXG+QfHf5ClGWJimcdHUqV2Lo1ne3+PiXi1JTtnHQ5d0Y+jj8wH49I5hnPNHr7tpzupd9Ht4LgeKubI6mHGMupER1I4o/YfyrgMZXP7sF0y+qAuDOyTw8drdXNi9RamPz3X4aBZd8yTzwsZ2RCrlSqEi1eQrBfAGfrNyHB3umc2kCztx45B2FXLexEmzuCKpFX8c2zNYd/hoFr9/dzUTR3SgaVx0kfGU1LdfFRzIOEaP+49fxZT2G/ux7By2ph2mRXxdYuoc/w711Tf7aNM4hoYxUTjnaHPne2WK5/qz23DPRQW7mwqT+wQ4wGW9T+O/S7cX+G9VGnf+dwXTF+Wvunte56ZcN6gNXVvGM2vlTi7p3ZJ6USp0cCqqUt1HFammJwUpv6ueX8AXm9IY27cVj/+obB+oJcnJcbS9q/DEsPy+EWxNO8yY//d5vvUpU0Zz6GgWUSV05+Tt4msZH82O/d6zKp9POpfTGpS/q7AoWx4ZVSFdVVK1VNnuI5FweeWGASE7d61axj+v68eanQe4rM9pbNx9iFteWUqrhnWJrxtJjzzPkORKz8zi3Mfnc2abRkw4py09WsUX+DA+fDR/V1RuQgAYNOUj2jeN5ZZz23PbjGWM6NKMhy7pRtP6+a/qDh3NYmvaYQAa1ovkyn4/4Nn5m4psy5eb0jirfZMy/w3k1KArBZFKdtfMlcHtsHn9OOl0Hh3bI/h9/a6DwUOL1w1qw4ulnIlv9YMXBF1AJ3Zt3T6iA7869wzW7zrI5xv3MP6sRK5+YSFfbMpfYqS8A+JSdZX2SkG3IIhUst9d0KnQ9d8dyF/CZESeO81uGNyG+/1bXmfdenax51+0xSssmJPjeHNZ/rpXuXeDdWgWx7WD2njPsYzrTXRkLRbcOTzY7/Ulhd8aLKc+dR+JVLL4epE0qBfJ9+nHmHRhJ/7x2RZSDx6lXtTxW243pR6/w6xT8zhaxNdl/KA2jB/UBoDnftKX7BzHnsOZ3PvmKmbdejZtmsTQZfIHjJ+6mJioCA4XUqBwaMemBdY1ia3D2t9fCMC9F3Xh9++u5vbXlnNZ79OqxU0EUrHUfSQSBvuPHGPV9v0M8vvuf/KPhRw4coy3fuVdBeQOCv95XG/O7dQ0351PxSlqMHnNgyOJjqxV4gBydo6jnT9gPqZnS54ZV/JtwQcyjpGRmV1gLEOqFnUfiVRh8XUjg4QA3jMRy7ft56UvUzg/zxwRo7u3KHVCAPjXz/sXur5uVESp7iiKqGXcem57AN5evoPl335P4qRZ3DK94ERGuc59/H/0+8Pxh/wys3Kq3BweUnpKCiJVQFu/wuvkt75mg/9w4gNjupa5++bsM5qQMmU0K+4fQcqU0ZzfpRm3Dj+jTOeYOKIjUf7DdRf/xbuN9p3lO4os/Jc7H/Y/v0jh273pdLhnNu3vno1zjsysnKB4oFQP6j4SqQJOLIkRGWGsfnAkkWV48rmiFdYV9fqNA2nVsF7wBPueQ0dJemhugf1O9Mr1/Xlr2Q6uPTuRTs3rV3isUjJ1H4lUI/WiavP6jQOD3x8b2zOsCQG8AocAwzsdH5we+7cvmfDy8S9lK7ftL9W5rnphIf9J/paRT31Kdk7RX0T/tz6VuatLP4WqVDwlBZEqIimxEYvuHs6L45O4uFfhJcYr0y+HtuMfP0viL1f34Z1fHb8NdsW2/eT4H+x1PI0dAAAQuElEQVTJW/diBk/9uFewfe7EwcWet+M9swtdn3Esm5+9uIjrX0rmrEfmkXrwaIGH9zalHuLjdbsLPV4qhpKCSBXSNC6aczs1qxJlJsyM4Z2bER0ZQfdW8ay8fwTndW4GwJzV37H7YAaLU/bRtklMvkHz9k3jSGrdkNHdW5AyZTSzbzsn33mzchx7D2cGv2dm5ZCcsper8lTm3bE/gzMfnkvX+z4IpnHdnHqI4X/6H9dOXRwki4xj2SROmhVMzFRe+9OPkThpFqOe/vSkzlNaH6/dzZqdB+h23wfc/O+vKuU1S0tjCiJSakcys+k8+f3g9+b1oxnUvgmP/6gH7e56j58OTAxm0ctr6GMfM7JbCzbuPsjcNd43/bduHhQMZJfVyz/vxzlnJBQY93j//86hU/P6vJr8LQ3rRbF6xwE6No9lZLfCq8ruOXSUTbsP8fynW5i7xuu2eu3GgZyZ2IjXl2zj9teWl7nGVElunb60wOyHPxnQmt9f0q3CXqMwKognIiFx4gfxby/oyM3DvNtYS5r3Yef+Iwx8pPB5sXNt/sMoFmxO46oXFha739rfjwxm1csrZcroAjEWVrajuEHyLY+MCsqDjD+r8ERXkv3px4ivV7A0eVHPkoS6tIgK4olIpRjSISFYLqnbq0V8XW45t32+qV3H9TudjGM5DGzbmEv8p6jPat+ED/5vMDnOEVunNoeOZnHhCV07hSUEKPxDN3HSLMb0bBl8Q68XFUF6IU985/pyUxpxdWpz8GgW075IYdoXKXz468Gc0Swu3365z2Pkzo9x18yVdGlRn/i6kdwyfWkwYyB4Vwjf7ksPjr33oi50Py2eK/7+JQD7DmfSMCYq2L5oy15mLPqGawa2xvCeNamMO7eUFESkTHInLMpV1tn1fjOiIw3rRfHgu6tpFBPFI5f1KHS/js3zfwDnfpPOOJadLyHcM7ozZzSLI/XgUW5/bXmRr5u3y6awhLBs8vn847Mt/PmjjWxJO8yRE56vOP/JT7igazM++NrrZnpmXG9u9R/q2/yHUfx+1uqg0OHoHl53Ve7fadHdw/O9/vBOTfn52V7Jkr//pC+/eHkJq3ceYOf+DPq3aUR6ZjY/fXEhGcdy+O/S4/Wr7hndmevPaVtkGyuCuo9EpMyOZedw5sNzuW34GVzr12Mqi+Xffs/Ff/mc6MhaQd2lspj0xgpmLPYmDMpNFidWhI2Lrs1jY3vyzd7D/OG9tYWeJ2/XF3jf/NvfPZuOzeJYt+sgpzWoy/bvi5+fuzzeuGkgfVs3AkrXpZbryzvPLdN0u3mp+0hEQiYyohbLJo8o9/FdW9anUUxU8CxEWd0y/AxmLP6WJrF1gnVmxn9/eRZREbVolxBL3TwFBls3juEXLy9h6rVncu1U79t73hLjuXK7gdbtOgjAlMu7s//IMQZ3SMg3c1953T2qM1G1awUJAbzB+qLUi4qgdi3jQEYWbRNiyp0QykJXCiJSLa3avp/TG9Ur81zgq7bvJ6ZObdo0iSl0+6V//Zyl33wPeIUE8yaXBZvTqBcVwfZ9R3hszjpeuq4fj3+wjjeXeV1D834zhOF/8mpXTTy/AznO0al5HDf+6ytq1zLWP3RhoaVLihp8/ure82kUE0V2jsPgpKrW6u4jEZFyWLg5jR8/t4CPfjOEtgmxJe5/6GgWvR+cQ2yd2iTfcz7f7k3ncGYWXVseH2v5Ji2dlg2igyuREx3JzCY9M4u6URHc9d+VQZKpyDuSlBRERKqpR99fS/P60fzsrMQKO6fGFEREqqnfjSx8dr7KoDIXIiISUFIQEZGAkoKIiASUFEREJKCkICIiASUFEREJhDwpmFmEmS01s3cL2TbRzFab2Qozm2dmrUMdj4iIFK0yrhRuA9YUsW0pkOSc6wG8DvyxEuIREZEihDQpmFkrYDTwQmHbnXMfO+dyC4wvAFqFMh4RESleqK8UngLuAHJKse/PgUJn9DazCWaWbGbJqampFRmfiIjkEbKkYGYXAbudc0tKse81QBLwWGHbnXPPOeeSnHNJCQkJhe0iIiIVIJS1jwYBY8xsFBAN1Dezfznnrsm7k5mdB9wNDHHOHQ1hPCIiUoKQXSk45+50zrVyziUCVwIfFZIQegN/B8Y453aHKhYRESmdSn9OwcweNLMx/q+PAbHAa2a2zMzerux4RETkuEopne2cmw/M95cn51l/XmW8voiIlI6eaBYRkYCSgoiIBJQUREQkoKQgIiIBJQUREQkoKYiISEBJQUREAkoKIiISUFIQEZGAkoKIiASUFEREJKCkICIiASUFEREJKCmIiEhASUFERAJKCiIiElBSEBGRgJKCiIgElBRERCSgpCAiIgElBRERCSgpiIhIQElBREQCSgoiIhJQUhARkYCSgoiIBJQUREQkEPKkYGYRZrbUzN4tZFsdM/uPmW00s4VmlhjqeEREpGiVcaVwG7CmiG0/B/Y559oDTwKPVkI8IiJShJAmBTNrBYwGXihil4uBf/rLrwPDzcxCGZOIiBQt1FcKTwF3ADlFbD8N+BbAOZcF7AcahzgmEREpQsiSgpldBOx2zi2pgHNNMLNkM0tOTU2tgOhERKQwobxSGASMMbMUYAZwrpn964R9tgOnA5hZbSAeSDvxRM6555xzSc65pISEhBCGLCJSs5lzLvQvYjYUuN05d9EJ628GujvnbjSzK4HLnHNXlHCuVGBrOUNpAuwp57FVzanSFrWj6jlV2nKqtAMqpi2tnXMlfquufZIvUmZm9iCQ7Jx7G/gH8LKZbQT2AleWdHxpGlXMayc755LKe3xVcqq0Re2oek6Vtpwq7YDKbUulJAXn3Hxgvr88Oc/6DOBHlRGDiIiUTE80i4hIoKYlhefCHUAFOlXaonZUPadKW06VdkAltqVSBppFRKR6qGlXCiIiUowakxTMbKSZrfOL700KdzwnMrMXzWy3ma3Ks66RmX1oZhv8fxv6683MnvHbssLM+uQ55mf+/hvM7GdhaMfpZvaxma02s6/N7LZq3JZoM1tkZsv9tjzgr2/jF3Dc6Bd0jPLXF1ng0czu9NevM7MLKrstfgz5ilNW43akmNlKM1tmZsn+uur4/mpgZq+b2VozW2NmA6tEO5xzp/wPEAFsAtoCUcByoEu44zohxsFAH2BVnnV/BCb5y5OAR/3lUcBswIABwEJ/fSNgs/9vQ3+5YSW3owXQx1+OA9YDXappWwyI9ZcjgYV+jK8CV/rr/wbc5C//Evibv3wl8B9/uYv/nqsDtPHfixFheI9NBF4B3vV/r67tSAGanLCuOr6//glc7y9HAQ2qQjsq9T9muH6AgcAHeX6/E7gz3HEVEmci+ZPCOqCFv9wCWOcv/x0Yd+J+wDjg73nW59svTG16Czi/urcFqAd8BfTHe4io9onvLeADYKC/XNvfz058v+XdrxLjbwXMA84F3vXjqnbt8F83hYJJoVq9v/CqN2zBH9etSu2oKd1HQeE93zZ/XVXXzDm301/+DmjmLxfVnirVTr/boTfeN+xq2Ra/y2UZsBv4EO/b8ffOK+B4YlxFFXisCm05sThlY6pnOwAcMMfMlpjZBH9ddXt/tQFSgal+l94LZhZDFWhHTUkK1Z7zvgZUm1vFzCwWeAP4P+fcgbzbqlNbnHPZzrleeN+0+wGdwhxSmVkFFqesIs52zvUBLgRuNrPBeTdWk/dXbbzu4medc72Bw3jdRYFwtaOmJIWg8J6vlb+uqttlZi0A/H93++uLak+VaKeZReIlhH875/7rr66WbcnlnPse+Bivm6WBeQUcT4yrqAKP4W5LgeKUwNNUv3YA4Jzb7v+7G5iJl6yr2/trG7DNObfQ//11vCQR9nbUlKSwGDjDv9siCm/w7O0wx1QabwO5dxP8DK9/Pnf9T/07EgYA+/1Lzg+AEWbW0L9rYYS/rtKYmeHVtFrjnHsiz6bq2JYEM2vgL9fFGxtZg5ccxvq7ndiW3DaOBT7yv+29DVzp39XTBjgDWFQ5rQDn3J3OuVbOuUS89/5HzrmrqWbtADCzGDOLy13Ge1+sopq9v5xz3wHfmllHf9VwYHWVaEdlDxKF6wdv9H49Xp/w3eGOp5D4pgM7gWN43yJ+jtePOw/YAMwFGvn7GvAXvy0rgaQ857kO2Oj/XBuGdpyNd8m7Aljm/4yqpm3pASz127IKmOyvb4v3YbgReA2o46+P9n/f6G9vm+dcd/ttXAdcGMb32VCO331U7drhx7zc//k69//lavr+6gUk+++vN/HuHgp7O/REs4iIBGpK95GIiJSCkoKIiASUFEREJKCkICIiASUFEREJKClIlWNm2X4FzOVm9pWZnVXC/g3M7JelOO98Mzsl5uytKGY2zczGlryn1BRKClIVHXHO9XLO9cQrwvZICfs3wKvsWSXleWpYpMpTUpCqrj6wD7x6SmY2z796WGlmF/v7TAHa+VcXj/n7/s7fZ7mZTclzvh+ZN0fCejM7x983wsweM7PFfq36X/jrW5jZJ/55V+Xun5d5tf3/6L/WIjNr76+fZmZ/M7OFwB/Nq5P/pn/+BWbWI0+bpvrHrzCzy/31I8zsS7+tr/m1pDCzKebNVbHCzB731/3Ij2+5mX1SQpvMzP6fefMhzAWaVuR/LKn+9A1GqqK65lUmjcYrD3yuvz4DuNQ5d8DMmgALzOxtvEJi3ZxXuA4zuxC4GOjvnEs3s0Z5zl3bOdfPzEYB9wHn4T09vt85d6aZ1QE+N7M5wGV45aQfNrMIvPLZhdnvnOtuZj/Fq0Z6kb++FXCWcy7bzP4MLHXOXWJm5wIv4T3Rem/u8X7sDf223QOc55w7bGa/Ayaa2V+AS4FOzjmXW4IDmAxc4JzbnmddUW3qDXTEmxuhGV5phRdL9V9FagQlBamKjuT5gB8IvGRm3fAe9f+DeVUxc/BKBDcr5PjzgKnOuXQA59zePNtyC/QtwZu/Arx6MT3y9K3H49X1WQy8aF6Bvzedc8uKiHd6nn+fzLP+Nedctr98NnC5H89HZtbYzOr7sV6Ze4Bzbp95VU274H2QgzcBy5d4JawzgH+YN3vau/5hnwPTzOzVPO0rqk2Dgel+XDvM7KMi2iQ1lJKCVGnOuS/9b84JeDWUEoC+zrlj5lX9jC7jKY/6/2Zz/P1vwC3OuQKFxPwENBrvQ/cJ59xLhYVZxPLhMsYWvCzwoXNuXCHx9MMrnjYW+BVwrnPuRjPr78e5xMz6FtUm/wpJpEgaU5Aqzcw64U2nmob3bXe3nxCGAa393Q7iTf2Z60PgWjOr558jb/dRYT4AbvKvCDCzDuZV42wN7HLOPQ+8gFfauDA/zvPvl0Xs8ylwtX/+ocAe580z8SFwc572NgQWAIPyjE/E+DHFAvHOufeAXwM9/e3tnHMLnXOT8SZuOb2oNgGfAD/2xxxaAMNK+NtIDaMrBamKcscUwPvG+zO/X/7fwDtmthKvuuRaAOdcmpl9bmargNnOud+aWS8g2cwygfeAu4p5vRfwupK+Mq+/JhW4BK+i6G/N7BhwCPhpEcc3NLMVeFchBb7d++7H64paAaRzvDzyQ8Bf/NizgQecc/81s/HAdH88ALwxhoPAW2YW7f9dJvrbHjOzM/x18/AqiK4ook0z8cZoVgPfUHQSkxpKVVJFToLfhZXknNsT7lhEKoK6j0REJKArBRERCehKQUREAkoKIiISUFIQEZGAkoKIiASUFEREJKCkICIigf8PiVWsDEFXd+gAAAAASUVORK5CYII=\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"learn.recorder.plot_losses()"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3.7 fasta.ai1 DEV",
"language": "python",
"name": "fastai1_dev"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.1"
},
"varInspector": {
"cols": {
"lenName": 16,
"lenType": 16,
"lenVar": 40
},
"kernels_config": {
"python": {
"delete_cmd_postfix": "",
"delete_cmd_prefix": "del ",
"library": "var_list.py",
"varRefreshCmd": "print(var_dic_list())"
},
"r": {
"delete_cmd_postfix": ") ",
"delete_cmd_prefix": "rm(",
"library": "var_list.r",
"varRefreshCmd": "cat(var_dic_list()) "
}
},
"types_to_exclude": [
"module",
"function",
"builtin_function_or_method",
"instance",
"_Feature"
],
"window_display": false
}
},
"nbformat": 4,
"nbformat_minor": 2
}
Display the source blob
Display the rendered blob
Raw
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment