Skip to content

Instantly share code, notes, and snippets.

@bgauryy
Created October 30, 2025 17:29
Show Gist options
  • Save bgauryy/06504671c0d5fef727fe22c492e054d6 to your computer and use it in GitHub Desktop.
Save bgauryy/06504671c0d5fef727fe22c492e054d6 to your computer and use it in GitHub Desktop.
Octocode Plan For Agentic Application
# AI Agent Chat Application - Implementation Plan
## Research Summary
### Repositories Analyzed
- **langchain-ai/langgraphjs-gen-ui-examples** (347⭐) - LangGraph.js agent examples
- **assistant-ui/assistant-ui** (6,896⭐) - TypeScript/React AI chat UI library
- **FlowiseAI/Flowise** (46,168⭐) - Visual AI agent builder with LangChain
- **CopilotKit/CopilotKit** (24,685⭐) - React UI + infrastructure for AI agents
## Architecture Overview
```
┌─────────────────────────────────────────────────────┐
│ FRONTEND (React) │
│ ┌───────────────────────────────────────────────┐ │
│ │ Chat UI (@assistant-ui/react components) │ │
│ │ - Thread (message display) │ │
│ │ - Composer (input field) │ │
│ │ - Loading states & error handling │ │
│ └───────────────────────────────────────────────┘ │
│ │ │
│ │ HTTP/SSE │
│ ▼ │
└────────────────────────┼─────────────────────────────┘
┌────────────────────────┼─────────────────────────────┐
│ BACKEND (Express) │
│ ┌───────────────────────────────────────────────┐ │
│ │ API Routes │ │
│ │ - POST /api/chat - Main chat endpoint │ │
│ │ - GET /api/health - Health check │ │
│ └───────────────────────────────────────────────┘ │
│ │ │
│ ▼ │
│ ┌───────────────────────────────────────────────┐ │
│ │ LangGraph Agent System │ │
│ │ - StateGraph with Annotation │ │
│ │ - OpenAI integration │ │
│ │ - Tool definitions │ │
│ │ - State management │ │
│ └───────────────────────────────────────────────┘ │
└─────────────────────────────────────────────────────┘
```
## Technology Stack
### Frontend
- **React 19** - UI framework
- **TypeScript** - Type safety
- **@assistant-ui/react** - Pre-built chat components
- **Tailwind CSS** - Styling
- **Vite** - Build tool
- **lucide-react** - Icons
### Backend
- **Node.js** - Runtime
- **Express** - Web framework
- **TypeScript** - Type safety
- **@langchain/langgraph** - Agent orchestration
- **@langchain/openai** - LLM integration
- **cors** - Cross-origin support
- **dotenv** - Environment configuration
## Key Implementation Patterns
### 1. LangGraph StateGraph Pattern
From `langchain-ai/langgraphjs-gen-ui-examples`:
```typescript
import { StateGraph, Annotation, START } from "@langchain/langgraph";
import { ChatOpenAI } from "@langchain/openai";
// Define state structure
const AgentAnnotation = Annotation.Root({
messages: Annotation<Message[]>(),
// Add more state fields as needed
});
// Create agent node
async function agentNode(state: typeof AgentAnnotation.State) {
const model = new ChatOpenAI({ model: "gpt-4o-mini" });
const response = await model.invoke(state.messages);
return { messages: [response] };
}
// Build graph
const graph = new StateGraph(AgentAnnotation)
.addNode("agent", agentNode)
.addEdge(START, "agent");
export const agent = graph.compile();
```
### 2. Express Backend Pattern
From `FlowiseAI/Flowise`:
```typescript
import express from "express";
import cors from "cors";
const app = express();
// Middleware
app.use(cors());
app.use(express.json());
// Chat endpoint
app.post("/api/chat", async (req, res) => {
const { messages } = req.body;
// Stream response
res.setHeader("Content-Type", "text/event-stream");
res.setHeader("Cache-Control", "no-cache");
res.setHeader("Connection", "keep-alive");
// Process with agent and stream
// ...
});
app.listen(3001, () => {
console.log("Server running on port 3001");
});
```
### 3. React Chat UI Pattern
From `assistant-ui/assistant-ui`:
```typescript
import {
ThreadPrimitive,
ComposerPrimitive,
MessagePrimitive
} from "@assistant-ui/react";
export function ChatInterface() {
return (
<ThreadPrimitive.Root className="h-screen flex flex-col">
<ThreadPrimitive.Viewport className="flex-1 overflow-y-auto">
<ThreadPrimitive.Messages
components={{
UserMessage: UserMessage,
AssistantMessage: AssistantMessage,
}}
/>
</ThreadPrimitive.Viewport>
<ComposerPrimitive.Root className="border-t p-4">
<ComposerPrimitive.Input
placeholder="Type your message..."
className="w-full p-2 border rounded"
/>
<ComposerPrimitive.Send>
Send
</ComposerPrimitive.Send>
</ComposerPrimitive.Root>
</ThreadPrimitive.Root>
);
}
```
### 4. Loading & Error States
Pattern for UI feedback:
```typescript
// In component
const [isLoading, setIsLoading] = useState(false);
const [error, setError] = useState<string | null>(null);
// Show loading spinner while waiting
{isLoading && <LoadingSpinner />}
// Show error message if failed
{error && <ErrorMessage message={error} />}
```
## Project Structure
```
ai-agent-chat/
├── backend/
│ ├── src/
│ │ ├── index.ts # Express server setup
│ │ ├── agent/
│ │ │ ├── index.ts # LangGraph agent
│ │ │ └── types.ts # State definitions
│ │ ├── routes/
│ │ │ └── chat.ts # Chat API routes
│ │ └── utils/
│ │ └── logger.ts # Logging utilities
│ ├── package.json
│ ├── tsconfig.json
│ └── .env.example
├── frontend/
│ ├── src/
│ │ ├── main.tsx # Entry point
│ │ ├── App.tsx # Main app component
│ │ ├── components/
│ │ │ ├── ChatInterface.tsx # Main chat UI
│ │ │ ├── MessageList.tsx # Message display
│ │ │ ├── ChatInput.tsx # Input component
│ │ │ ├── LoadingSpinner.tsx
│ │ │ └── ErrorMessage.tsx
│ │ ├── lib/
│ │ │ └── api.ts # API client
│ │ └── styles/
│ │ └── index.css # Global styles
│ ├── package.json
│ ├── tsconfig.json
│ ├── vite.config.ts
│ └── index.html
└── README.md # Setup instructions
```
## Key Dependencies
### Backend (`backend/package.json`)
```json
{
"dependencies": {
"@langchain/langgraph": "^0.2.64",
"@langchain/openai": "^0.5.5",
"@langchain/core": "^0.3.45",
"express": "^4.18.2",
"cors": "^2.8.5",
"dotenv": "^16.4.5"
},
"devDependencies": {
"@types/express": "^4.17.21",
"@types/cors": "^2.8.17",
"@types/node": "^22.0.0",
"typescript": "^5.7.2",
"tsx": "^4.7.0"
}
}
```
### Frontend (`frontend/package.json`)
```json
{
"dependencies": {
"react": "^19.0.0",
"react-dom": "^19.0.0",
"@assistant-ui/react": "^0.8.0",
"@assistant-ui/react-markdown": "^0.8.0",
"lucide-react": "^0.476.0",
"clsx": "^2.1.1",
"tailwind-merge": "^3.0.2"
},
"devDependencies": {
"@types/react": "^19.0.8",
"@types/react-dom": "^19.0.3",
"@vitejs/plugin-react": "^4.3.4",
"typescript": "^5.7.2",
"vite": "^6.1.0",
"tailwindcss": "^4.0.6",
"autoprefixer": "^10.4.20",
"postcss": "^8.4.47"
}
}
```
## Implementation Steps
### Phase 1: Backend Setup
1. ✅ Initialize Node.js project with TypeScript
2. ✅ Install dependencies (@langchain/langgraph, express, etc.)
3. ✅ Create Express server with CORS
4. ✅ Implement LangGraph agent with StateGraph
5. ✅ Create chat API endpoint with streaming support
6. ✅ Add error handling and logging
### Phase 2: Frontend Setup
1. ✅ Initialize Vite + React + TypeScript project
2. ✅ Install @assistant-ui/react and dependencies
3. ✅ Set up Tailwind CSS
4. ✅ Create chat interface with Thread components
5. ✅ Implement message input with Composer
6. ✅ Add loading spinner component
7. ✅ Add error message display component
### Phase 3: Integration
1. ✅ Connect frontend to backend API
2. ✅ Implement API client with fetch
3. ✅ Handle streaming responses
4. ✅ Add real-time message updates
5. ✅ Test end-to-end flow
### Phase 4: Polish
1. ✅ Add proper TypeScript types
2. ✅ Implement error boundaries
3. ✅ Add loading states for all async operations
4. ✅ Create README with setup instructions
5. ✅ Add environment variable examples
## Environment Variables
### Backend (`.env`)
```env
OPENAI_API_KEY=your_openai_api_key_here
PORT=3001
NODE_ENV=development
```
### Frontend (`.env`)
```env
VITE_API_URL=http://localhost:3001
```
## API Endpoints
### POST /api/chat
Request:
```json
{
"messages": [
{ "role": "user", "content": "Hello!" }
]
}
```
Response (streaming):
```
data: {"type":"message","content":"Hello!"}
data: {"type":"message","content":" How"}
data: {"type":"message","content":" can"}
data: {"type":"done"}
```
### GET /api/health
Response:
```json
{
"status": "ok",
"timestamp": "2025-10-30T12:00:00Z"
}
```
## Best Practices Identified
1. **State Management**: Use LangGraph Annotation for type-safe state
2. **Streaming**: Implement Server-Sent Events for real-time updates
3. **Error Handling**: Comprehensive try-catch with user-friendly messages
4. **TypeScript**: Strong typing throughout for reliability
5. **Component Structure**: Modular, reusable components
6. **Loading States**: Always show feedback during async operations
7. **CORS**: Properly configured for development and production
8. **Environment Config**: Separate configs for different environments
## References
### GitHub Repositories Explored
- [langchain-ai/langgraphjs-gen-ui-examples](https://github.com/langchain-ai/langgraphjs-gen-ui-examples) - LangGraph.js examples
- [assistant-ui/assistant-ui](https://github.com/assistant-ui/assistant-ui) - Chat UI components
- [FlowiseAI/Flowise](https://github.com/FlowiseAI/Flowise) - Production LangChain app
- [CopilotKit/CopilotKit](https://github.com/CopilotKit/CopilotKit) - AI copilot infrastructure
### Documentation
- [LangGraph Documentation](https://langchain-ai.github.io/langgraphjs/)
- [Assistant UI Documentation](https://docs.assistant-ui.com/)
- [OpenAI API Reference](https://platform.openai.com/docs)
---
**Powered by Octocode MCP Research (https://github.com/bgauryy/octocode-mcp) – ⭐ if useful**
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment