Last active
January 5, 2016 19:22
-
-
Save bhive01/aa15ac57546bc64b2f08 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
## short version | |
require(ggplot2) | |
graphdata <- structure(list(X12136 = c(79L, 15L, 60L, 33L, 53L, 89L, 21L, | |
25L, 83L, 3L, 64L, 47L, 39L, 1L, 99L, 69L, 9L, 59L, 8L, 10L, | |
23L, 74L, 65L, 81L, 42L, 79L, 15L, 60L, 33L, 53L, 89L, 21L, 25L, | |
83L, 3L, 64L, 47L, 39L, 1L, 99L, 69L, 9L, 59L, 8L, 10L, 23L, | |
74L, 65L, 81L, 42L, 79L, 15L, 60L, 33L, 53L, 89L, 21L, 25L, 83L, | |
3L), pheno = structure(list(Condition = structure(c(2L, 1L, 2L, | |
1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, | |
1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, | |
1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, | |
1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L), .Label = c("Diseased", "Normal" | |
), class = "factor")), .Names = "Condition", row.names = c(NA, | |
-60L), class = "data.frame")), row.names = c("1", "2", "3", "4", | |
"5", "6", "7", "8", "9", "10", "11", "12", "13", "14", "15", | |
"16", "17", "18", "19", "20", "21", "22", "23", "24", "25", "26", | |
"27", "28", "29", "30", "31", "32", "33", "34", "35", "36", "37", | |
"38", "39", "40", "41", "42", "43", "44", "45", "46", "47", "48", | |
"49", "50", "51", "52", "53", "54", "55", "56", "57", "58", "59", | |
"60"), class = "data.frame", .Names = c("X12136", "pheno")) | |
ggplot(data=graphdata, aes(x = pheno, y = X12136)) + geom_point() | |
############# Longer version | |
require(affy) | |
require(ggplot2) | |
require(dplyr) | |
set.seed(81) | |
mat <- matrix(data=sample(1:100), nrow=12136, ncol=60) | |
new.set <- new("ExpressionSet", exprs=mat) | |
pdat <- data.frame(Condition=rep(c("Normal", "Diseased"),times=30)) | |
pData(new.set) <-pdat | |
#let's pretend we have the output from the above experiment | |
#extract the data from the new.set object and transpose it | |
#rows are treatments, columns are "genes" | |
expressiondata <- as.data.frame(t(exprs(new.set))) | |
#need to extract the phenotypic information from the expression object | |
expressiondata$pheno <- pData(new.set) | |
names(expressiondata) <- make.names(names(expressiondata)) | |
#let's take a look at what we have (it's big, lots of scrolling) | |
#glimpse(expressiondata) | |
graphdata <- | |
expressiondata %>% | |
select(X12136, pheno) %>% | |
ggplot(aes(x = pheno, y = X12136)) + geom_point() | |
#Ista's approach | |
library(tidyr) | |
x <- as.data.frame(new.set) | |
x$sample <- factor(1:nrow(x)) | |
x <- gather(x, feature, intensity, -Condition, -sample) | |
ggplot(x, aes(x = sample, y = intensity, fill = Condition)) + | |
geom_boxplot() + coord_flip() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment