This is a proof-of-concept on how one can use RStudio to livecode D3 visualizations.
You will need to install a couple of packages before getting started
devtools::install_github("yihui/servr")
library(rCharts) | |
library(plyr) | |
library(reshape2) | |
library(scales) | |
findata=read.csv("https://raw.github.com/patilv/rChartsTutorials/master/findata.csv") | |
# These are data regarding NCAA athletic department expenses at public universities. Please see the blog post where these charts were originally used | |
# regarding more details on the origins of these data.: http://analyticsandvisualization.blogspot.com/2013/10/subsidies-revenues-and-expenses-of-ncaa.html | |
findata=findata[,-c(1:2)] # removing first dummy column - the csv quirk - and second column on Rank. |
require(tidyr) | |
require(dplyr) | |
#require(ggplot2) | |
# from: https://twitter.com/JennyBryan/status/646047312830050304 | |
separate(data.frame(x = "howdy"), x, into = 1:6, sep = "(?!^)") | |
#works with more than one word | |
separate(data.frame(x = c("howdy", "snake")), x, into = 1:6, sep = "(?!^)") |
## short version | |
require(ggplot2) | |
graphdata <- structure(list(X12136 = c(79L, 15L, 60L, 33L, 53L, 89L, 21L, | |
25L, 83L, 3L, 64L, 47L, 39L, 1L, 99L, 69L, 9L, 59L, 8L, 10L, | |
23L, 74L, 65L, 81L, 42L, 79L, 15L, 60L, 33L, 53L, 89L, 21L, 25L, | |
83L, 3L, 64L, 47L, 39L, 1L, 99L, 69L, 9L, 59L, 8L, 10L, 23L, | |
74L, 65L, 81L, 42L, 79L, 15L, 60L, 33L, 53L, 89L, 21L, 25L, 83L, | |
3L), pheno = structure(list(Condition = structure(c(2L, 1L, 2L, | |
1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, |
require(dplyr) | |
# input data frame | |
df1 <- data.frame(trait=rep(1:10, 4), Trait.Code = rep(LETTERS[1:4], each = 10), Alpha_Value= rep(c(NA, "1", NA, "Alphastuff"), each = 10), Number_Value = rep(c(3, NA, 6, NA), each = 10), stringsAsFactors= FALSE) | |
df1 %>% | |
mutate(n=row_number()) %>% #add index for later join | |
filter(!is.na(Alpha_Value), Alpha_Value != "NULL") %>% # Alpha_Value != NULL or NA | |
group_by(Trait.Code) %>% #group for mutate | |
mutate(Converted_Value = ifelse(any(is.na(as.numeric(.$Alpha_Value))), NA, as.numeric(Alpha_Value))) %>% |
require(ggplot2) | |
require(dplyr) | |
require(plotly) | |
test <- data.frame(year = rep(2001:2016, each=10), group= rep(LETTERS[1:16], times = 10), count = runif(160)) | |
gg <- ggplot(test, aes(x=year, y = count, group = group, colour = group)) + | |
geom_point() + | |
geom_line() | |
gg |
L.shell.Day5 a.shell.Day5 b.shell.Day5 Hex.shell.Day5 L.shell.Day1 a.shell.Day1 b.shell.Day1 Hex.shell.Day1 | |
61.1824499603039 -22.076387665463 32.2221171514149 #8A9F68 59.1700367857259 -22.0471225002006 34.9234624183896 #859758 | |
56.8621418223068 -24.97288907957 42.0601786964881 #778D3B 51.5169668478454 -23.9252046480325 36.6068073530096 #627A37 | |
62.7257035685657 -22.9733681151521 35.8083291448731 #8AA164 57.7975941354515 -22.202011261358 35.4614903698262 #809651 | |
59.9427072331491 -23.4729626916318 34.455617994546 #809957 55.2358856160348 -21.9162837108123 35.5743258652009 #778C49 | |
63.6548194655096 -24.6867708185501 44.698102412673 #8DA34C 54.0763291124911 -21.8893308495491 35.6211872004396 #748946 | |
67.5740105523698 -23.8259047306477 45.808160158852 #9AAD54 58.3355995894783 -24.1634822371787 37.4696438729551 #7C954D | |
73.2291440290129 -21.7287032147082 38.4157268985132 #AABB72 61.9082465991772 -20.7769111456906 31.9351191059027 #899D61 | |
58.871658635331 -23.2615793573258 37.1729800997476 #7F964F 57.398673319426 -22.7656 |
library(devtools) | |
library(iotools) | |
library(R.utils) | |
library(feather) # install_github("wesm/feather/R") | |
library(microbenchmark) | |
library(data.table) | |
library(readr) | |
library(ggplot2) | |
library(plotly) |
library(dplyr) | |
library(tidyr) | |
no_col <- max(count.fields("https://gist.githubusercontent.com/bhive01/ad5f2f51b02aed0ccfbd50ee3bb8dd68/raw/e0a66e51c88da13861bfa9f624aef5bb62cbfb32/fruitshape.txt", sep = ",")) | |
cukeshape <- read.table("https://gist.githubusercontent.com/bhive01/ad5f2f51b02aed0ccfbd50ee3bb8dd68/raw/e0a66e51c88da13861bfa9f624aef5bb62cbfb32/fruitshape.txt",sep=",",fill=TRUE,col.names=1:no_col) | |
tcukeshape <- as.data.frame(t(cukeshape)) | |
tcukeshape %>% | |
gather(., fruit, width) %>% |