Skip to content

Instantly share code, notes, and snippets.

@biemster
Forked from jesperborgstrup/ec_lsag_test.py
Created September 20, 2022 09:06
Show Gist options
  • Save biemster/25732970ca883a87d1b1d5ef7832f1f6 to your computer and use it in GitHub Desktop.
Save biemster/25732970ca883a87d1b1d5ef7832f1f6 to your computer and use it in GitHub Desktop.
Python implementation of Linkable Ring Signatures over Elliptic curves
# MIT License
#
# Copyright (C) 2014 Jesper Borgstrup
# -------------------------------------------------------------------
# Permission is hereby granted, free of charge, to any person
# obtaining a copy of this software and associated documentation
# files (the "Software"), to deal in the Software without restriction,
# including without limitation the rights to use, copy, modify, merge,
# publish, distribute, sublicense, and/or sell copies of the Software,
# and to permit persons to whom the Software is furnished to do so,
# subject to the following conditions:
#
# The above copyright notice and this permission notice shall be
# included in all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
# EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
# OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
# NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
# HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
# WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
# DEALINGS IN THE SOFTWARE.
import hashlib
from pyelliptic.openssl import OpenSSL
from random import randint
import time
CURVE = "secp256k1"
KEY_COUNT = 10000
DEBUG = False
curve_p = 2**256 - 2**32 - 2**9 - 2**8 - 2**7 - 2**6 - 2**4 - 1
def sign(group, keys, signer_index, message="Hello message"):
key_count = len( keys )
# Set signer
signer = keys[signer_index]
privkey_signer = get_bignum( OpenSSL.EC_KEY_get0_private_key( signer ) )
# Get EC variables for later use
group = OpenSSL.EC_KEY_get0_group( signer )
group_order = get_order( group )
generator = OpenSSL.EC_GROUP_get0_generator( group )
# Make room for c_i, s_i, z'_i, and z''_i variables
cs = [0] * key_count
ss = [0] * key_count
z_s = [0] * key_count
z__s = [0] * key_count
# Retrieve all public keys and their coordinates
public_keys = map( lambda key: OpenSSL.EC_KEY_get0_public_key( key ), keys )
public_keys_coords = map( lambda result: get_point_coordinates( group, result ), public_keys )
# Step 1
keys_list_hash = H2( public_keys_coords )
H = find_point_try_and_increment( group, keys_list_hash, curve_p )
Y_tilde = multiply_point( group, H, by_dec=privkey_signer )
# Step 2
u = randint( 0, group_order )
pi_plus_1 = (signer_index+1) % key_count
cs[pi_plus_1] = H1( group, keys_list_hash, Y_tilde, message,
multiply_generator( group, by_dec=u ),
multiply_point( group, H, by_dec=u ) )
# Step 3
for i in range( signer_index+1, key_count ) + range( signer_index ):
ss[i] = randint( 0, group_order )
next_i = (i+1) % key_count
z_s[i] = multiply_and_add_points( group, generator, ss[i], public_keys[i], cs[i] )
z__s[i] = multiply_and_add_points( group, H, ss[i], Y_tilde, cs[i] )
cs[next_i] = H1( group, keys_list_hash, Y_tilde, message, z_s[i], z__s[i] )
# Step 4
ss[signer_index] = ( u - privkey_signer * cs[signer_index] ) % group_order
if DEBUG:
dump_point( group, H, "SIGN H" )
dump_point( group, Y_tilde, "SIGN Y_tilde")
for i in range( len( cs ) ):
print "SIGN c_%d: %d" % ( i, cs[i] )
print "SIGN s_%d: %d" % ( i, ss[i] )
if z_s[i] != 0:
dump_point( group, z_s[i], "SIGN Z_%d" % i )
if z__s[i] != 0:
dump_point( group, z__s[i], "SIGN Z__%d" % i )
print "-----------------------------------------"
return ( public_keys,
message,
cs[0],
ss,
Y_tilde
)
def verify( group, public_keys, message, c_0, ss, Y_tilde ):
public_keys_coords = map( lambda result: get_point_coordinates( group, result ), public_keys )
generator = OpenSSL.EC_GROUP_get0_generator( group )
n = len( public_keys )
cs = [c_0] + [0] * ( n - 1 )
z_s = [0] * n
z__s = [0] * n
# Step 1
keys_list_hash = H2( public_keys_coords )
H = find_point_try_and_increment( group, keys_list_hash, curve_p )
for i in range( n ):
z_s[i] = multiply_and_add_points( group, generator, ss[i], public_keys[i], cs[i] )
z__s[i] = multiply_and_add_points( group, H, ss[i], Y_tilde, cs[i] )
if i < n - 1:
cs[i+1] = H1( group, keys_list_hash, Y_tilde, message, z_s[i], z__s[i] )
H1_ver = H1( group, keys_list_hash, Y_tilde, message, z_s[n-1], z__s[n-1] )
if DEBUG:
dump_point( group, H, "VERIFY H" )
for i in range( len( cs ) ):
print "VERIFY c_%d: %d" % ( i, cs[i] )
print "VERIFY s_%d: %d" % ( i, ss[i] )
dump_point( group, z_s[i], "VERIFY Z_%d" % i )
dump_point( group, z__s[i], "VERIFY Z__%d" % i )
print "-----------------------------------------"
print "VERIFY H1_ver==c_0: (%d == %d)" % ( H1_ver, cs[0] )
return cs[0] == H1_ver
def H2( input ):
"""
Hash the input as a string and return the hash as an integer.
"""
return int( hashlib.sha1( 'H2_salt%s'%(input)).hexdigest(), 16 )
def H1(group, keys, Y_tilde, message, P1, P2):
"""
The H1 function that hashes a lot of variables
and returns the hash as an integer.
"""
P1_x, P1_y = get_point_coordinates( group, P1 )
P2_x, P2_y = get_point_coordinates( group, P2 )
str = "%s,%d,%s,%d,%d,%d,%d" % ( keys, Y_tilde, message,
P1_x, P1_y, P2_x, P2_y)
return int( hashlib.sha1( "H1_salt%s"%(str) ).hexdigest(), 16 )
def int2bin(i):
"""
Takes an integer and returns a bitstring (big endian)
representing the integer.
"""
result = []
while i:
result.append(chr(i&0xFF))
i >>= 8
result.reverse()
return ''.join(result)
def new_bignum(decval=None,binval=None):
"""
Constructs a new BN object
and fills it with the value given.
"""
bn = OpenSSL.BN_new()
if decval is not None:
binval = int2bin( decval )
if binval is not None:
OpenSSL.BN_bin2bn( binval, len( binval ), bn )
return bn
def get_order(group):
"""
Returns the order of the elliptic curve group.
"""
result = 0
try:
result_bn = OpenSSL.BN_new()
OpenSSL.EC_GROUP_get_order(group, result_bn, None)
result = get_bignum( result_bn )
finally:
OpenSSL.BN_free( result_bn )
return result
def multiply_point(group, point, by_dec=None, by_bin=None):
"""
Multiply an EC point by a scalar value
and returns the multiplication result
"""
bn = new_bignum( decval=by_dec, binval=by_bin )
result = OpenSSL.EC_POINT_new( group )
OpenSSL.EC_POINT_mul( group, result, 0, point, bn, 0 )
OpenSSL.BN_free( bn )
return result
def multiply_generator(group, by_dec=None, by_bin=None):
"""
Multiply the EC group's generator point by a scalar value
and returns the multiplication result
"""
try:
bn = new_bignum( decval=by_dec, binval=by_bin )
result = OpenSSL.EC_POINT_new( group )
OpenSSL.EC_POINT_mul( group, result, bn, 0, 0, 0 )
finally:
OpenSSL.BN_free( bn )
return result
def multiply_and_add_points(group, P1, c1, P2, c2):
"""
Shorthand function for returning c1*P1+c2*P2,
where P1 and P2 are EC points and c1 and c2 are scalar values.
"""
_P1 = multiply_point( group, P1, by_dec=c1 )
_P2 = multiply_point( group, P2, by_dec=c2 )
result = OpenSSL.EC_POINT_new( group )
OpenSSL.EC_POINT_add( group, result, _P1, _P2, 0 )
return result
def generate_key( curve ):
"""
Generates an EC public/private key pair.
"""
key = OpenSSL.EC_KEY_new_by_curve_name( curve )
OpenSSL.EC_KEY_generate_key( key )
return key
def get_bignum(bn):
"""
Extracts and returns the value of a BN object.
"""
binary = OpenSSL.malloc(0, OpenSSL.BN_num_bytes( bn ) )
OpenSSL.BN_bn2bin( bn, binary )
return int( binary.raw.encode('hex') or '0', 16 )
def get_point_coordinates(group, point):
"""
Extracts the X and Y coordinates for an EC point,
and returns these coordinates.
"""
try:
x = OpenSSL.BN_new()
y = OpenSSL.BN_new()
# Put X and Y coordinates of public key into x and y vars
OpenSSL.EC_POINT_get_affine_coordinates_GFp( group, point, x, y, None )
return get_bignum( x ), get_bignum( y )
finally:
OpenSSL.BN_free( x )
OpenSSL.BN_free( y )
def modular_sqrt(a, p):
""" Find a quadratic residue (mod p) of 'a'. p
must be an odd prime.
Solve the congruence of the form:
x^2 = a (mod p)
And returns x. Note that p - x is also a root.
0 is returned is no square root exists for
these a and p.
The Tonelli-Shanks algorithm is used (except
for some simple cases in which the solution
is known from an identity). This algorithm
runs in polynomial time (unless the
generalized Riemann hypothesis is false).
Originally taken from
http://eli.thegreenplace.net/2009/03/07/computing-modular-square-roots-in-python/
"""
# Simple cases
#
if legendre_symbol(a, p) != 1:
return 0
elif a == 0:
return 0
elif p == 2:
return p
elif p % 4 == 3:
return pow(a, (p + 1) / 4, p)
# Partition p-1 to s * 2^e for an odd s (i.e.
# reduce all the powers of 2 from p-1)
#
s = p - 1
e = 0
while s % 2 == 0:
s /= 2
e += 1
# Find some 'n' with a legendre symbol n|p = -1.
# Shouldn't take long.
#
n = 2
while legendre_symbol(n, p) != -1:
n += 1
# Here be dragons!
# Read the paper "Square roots from 1; 24, 51,
# 10 to Dan Shanks" by Ezra Brown for more
# information
#
# x is a guess of the square root that gets better
# with each iteration.
# b is the "fudge factor" - by how much we're off
# with the guess. The invariant x^2 = ab (mod p)
# is maintained throughout the loop.
# g is used for successive powers of n to update
# both a and b
# r is the exponent - decreases with each update
#
x = pow(a, (s + 1) / 2, p)
b = pow(a, s, p)
g = pow(n, s, p)
r = e
while True:
t = b
m = 0
for m in xrange(r):
if t == 1:
break
t = pow(t, 2, p)
if m == 0:
return x
gs = pow(g, 2 ** (r - m - 1), p)
g = (gs * gs) % p
x = (x * gs) % p
b = (b * g) % p
r = m
def legendre_symbol(a, p):
""" Compute the Legendre symbol a|p using
Euler's criterion. p is a prime, a is
relatively prime to p (if p divides
a, then a|p = 0)
Returns 1 if a has a square root modulo
p, -1 otherwise.
Originally taken from
http://eli.thegreenplace.net/2009/03/07/computing-modular-square-roots-in-python/
"""
ls = pow(a, (p - 1) / 2, p)
return -1 if ls == p - 1 else ls
def find_point_try_and_increment(group, x, p):
found = False
x -= 1
while not found:
x += 1
y_sq = x**3 + 7
y = modular_sqrt( y_sq, p )
if y != 0:
result = OpenSSL.EC_POINT_new( group )
x_bn = new_bignum( x )
y_bn = new_bignum( y )
OpenSSL.EC_POINT_set_affine_coordinates_GFp( group, result, x_bn, y_bn, None )
return result
def dump_bignum(bn, prefix=""):
"""
Prints the value of a BN object with an optional prefix.
"""
print "%s: %d" % ( prefix, get_bignum( bn ) )
def dump_point(group, result, prefix=""):
"""
Prints the coordinates of an EC point with an optional prefix.
"""
x, y = get_point_coordinates( group, result )
print "%s X: %d\n%s Y: %d" % ( prefix, x, prefix, y )
def dump_key(key):
"""
Prints the private and public keys of an EC key with an optional prefix.
"""
group = OpenSSL.EC_KEY_get0_group( key )
pubkey = OpenSSL.EC_KEY_get0_public_key( key )
privkey = OpenSSL.EC_KEY_get0_private_key( key )
dump_bignum( privkey, "Private key" )
dump_point( group, pubkey, "Public key" )
def get_signature_size( signature ):
public_keys, message, c_0, ss, Y_tilde = signature
# Each public key is 64 bytes (32 bytes per coordinate)
size = 64 * len( public_keys )
size += len( int2bin( c_0 ) )
size += sum( map( lambda s: len( int2bin( s ) ), ss ) )
# Y_tilde is also a point, which again requires 64 bytes
size += 64
return size
def run_test( group, keys, signer_index ):
signature = sign( group, keys, signer_index )
assert verify( group, *signature )
return get_signature_size( signature )
def run_multiple_tests( group, keys, signer_index=0, tests=1 ):
t_start = time.time()
size = sum( map( lambda _: run_test( group, keys, signer_index), range( tests ) ) )
t_end = time.time()
t = t_end - t_start
print "Signing and verifying %d messages with %d keys took %.3f seconds (%.3f s/msg, %.3f ms/msg/key)" \
% ( tests, len( keys ), t, t / tests, 1000 * t / tests / len( keys ) )
print "The %d signatures were %d bytes in total (%.3f b/test, %.3f b/test/key)" % ( tests, size, float(size) / tests, float(size) / tests / len(keys) )
return ( len( keys ), tests, t, size )
if __name__ == "__main__":
curve = OpenSSL.get_curve( CURVE )
group = OpenSSL.EC_GROUP_new_by_curve_name( curve )
# Generate private/public key pairs
print "Generating %d key pairs..." % KEY_COUNT
t = time.time()
key_gen_time = keys = map( lambda _: generate_key( curve ), range( KEY_COUNT ) )
print "Generating %d key pairs took %.3f seconds" % ( KEY_COUNT, time.time() - t )
results = []
for i in [ 2, 3, 5, 10, 20, 30, 50, 100, 200, 300, 500, 1000, 2000, 3000, 5000, 10000]:
results.append( run_multiple_tests( group, keys[0:i], tests=10 ) )
print repr( results )
# Copyright (C) 2011 Yann GUIBET <[email protected]>
# See LICENSE for details.
#
# Software slightly changed by Jonathan Warren <bitmessage at-symbol jonwarren.org>
#
# Additional changes by Jesper Borgstrup <jesper at-symbol borgstrup.dk>:
# * Added EC_GROUP_get0_generator, EC_GROUP_get_order,
# EC_GROUP_new_by_curve_name and EC_POINT_add.
import sys
import ctypes
OpenSSL = None
class CipherName:
def __init__(self, name, pointer, blocksize):
self._name = name
self._pointer = pointer
self._blocksize = blocksize
def __str__(self):
return "Cipher : " + self._name + " | Blocksize : " + str(self._blocksize) + " | Fonction pointer : " + str(self._pointer)
def get_pointer(self):
return self._pointer()
def get_name(self):
return self._name
def get_blocksize(self):
return self._blocksize
class _OpenSSL:
"""
Wrapper for OpenSSL using ctypes
"""
def __init__(self, library):
"""
Build the wrapper
"""
self._lib = ctypes.CDLL(library)
self.pointer = ctypes.pointer
self.c_int = ctypes.c_int
self.byref = ctypes.byref
self.create_string_buffer = ctypes.create_string_buffer
self.BN_new = self._lib.BN_new
self.BN_new.restype = ctypes.c_void_p
self.BN_new.argtypes = []
self.BN_free = self._lib.BN_free
self.BN_free.restype = None
self.BN_free.argtypes = [ctypes.c_void_p]
self.BN_num_bits = self._lib.BN_num_bits
self.BN_num_bits.restype = ctypes.c_int
self.BN_num_bits.argtypes = [ctypes.c_void_p]
self.BN_bn2bin = self._lib.BN_bn2bin
self.BN_bn2bin.restype = ctypes.c_int
self.BN_bn2bin.argtypes = [ctypes.c_void_p, ctypes.c_void_p]
self.BN_bin2bn = self._lib.BN_bin2bn
self.BN_bin2bn.restype = ctypes.c_void_p
self.BN_bin2bn.argtypes = [ctypes.c_void_p, ctypes.c_int,
ctypes.c_void_p]
self.EC_GROUP_get0_generator = self._lib.EC_GROUP_get0_generator
self.EC_GROUP_get0_generator.restype = ctypes.c_int
self.EC_GROUP_get0_generator.argtypes = [ctypes.c_void_p]
self.EC_GROUP_get_order = self._lib.EC_GROUP_get_order
self.EC_GROUP_get_order.restype = ctypes.c_int
self.EC_GROUP_get_order.argtypes = [ctypes.c_void_p, ctypes.c_void_p,
ctypes.c_void_p]
self.EC_GROUP_new_by_curve_name = self._lib.EC_GROUP_new_by_curve_name
self.EC_GROUP_new_by_curve_name.restype = ctypes.c_void_p
self.EC_GROUP_new_by_curve_name.argtypes = [ctypes.c_int]
self.EC_KEY_free = self._lib.EC_KEY_free
self.EC_KEY_free.restype = None
self.EC_KEY_free.argtypes = [ctypes.c_void_p]
self.EC_KEY_new_by_curve_name = self._lib.EC_KEY_new_by_curve_name
self.EC_KEY_new_by_curve_name.restype = ctypes.c_void_p
self.EC_KEY_new_by_curve_name.argtypes = [ctypes.c_int]
self.EC_KEY_generate_key = self._lib.EC_KEY_generate_key
self.EC_KEY_generate_key.restype = ctypes.c_int
self.EC_KEY_generate_key.argtypes = [ctypes.c_void_p]
self.EC_KEY_check_key = self._lib.EC_KEY_check_key
self.EC_KEY_check_key.restype = ctypes.c_int
self.EC_KEY_check_key.argtypes = [ctypes.c_void_p]
self.EC_KEY_get0_private_key = self._lib.EC_KEY_get0_private_key
self.EC_KEY_get0_private_key.restype = ctypes.c_void_p
self.EC_KEY_get0_private_key.argtypes = [ctypes.c_void_p]
self.EC_KEY_get0_public_key = self._lib.EC_KEY_get0_public_key
self.EC_KEY_get0_public_key.restype = ctypes.c_void_p
self.EC_KEY_get0_public_key.argtypes = [ctypes.c_void_p]
self.EC_KEY_get0_group = self._lib.EC_KEY_get0_group
self.EC_KEY_get0_group.restype = ctypes.c_void_p
self.EC_KEY_get0_group.argtypes = [ctypes.c_void_p]
self.EC_POINT_get_affine_coordinates_GFp = self._lib.EC_POINT_get_affine_coordinates_GFp
self.EC_POINT_get_affine_coordinates_GFp.restype = ctypes.c_int
self.EC_POINT_get_affine_coordinates_GFp.argtypes = [ctypes.c_void_p, ctypes.c_void_p, ctypes.c_void_p, ctypes.c_void_p, ctypes.c_void_p]
self.EC_KEY_set_private_key = self._lib.EC_KEY_set_private_key
self.EC_KEY_set_private_key.restype = ctypes.c_int
self.EC_KEY_set_private_key.argtypes = [ctypes.c_void_p,
ctypes.c_void_p]
self.EC_KEY_set_public_key = self._lib.EC_KEY_set_public_key
self.EC_KEY_set_public_key.restype = ctypes.c_int
self.EC_KEY_set_public_key.argtypes = [ctypes.c_void_p,
ctypes.c_void_p]
self.EC_KEY_set_group = self._lib.EC_KEY_set_group
self.EC_KEY_set_group.restype = ctypes.c_int
self.EC_KEY_set_group.argtypes = [ctypes.c_void_p, ctypes.c_void_p]
self.EC_POINT_set_affine_coordinates_GFp = self._lib.EC_POINT_set_affine_coordinates_GFp
self.EC_POINT_set_affine_coordinates_GFp.restype = ctypes.c_int
self.EC_POINT_set_affine_coordinates_GFp.argtypes = [ctypes.c_void_p, ctypes.c_void_p, ctypes.c_void_p, ctypes.c_void_p, ctypes.c_void_p]
self.EC_POINT_new = self._lib.EC_POINT_new
self.EC_POINT_new.restype = ctypes.c_void_p
self.EC_POINT_new.argtypes = [ctypes.c_void_p]
self.EC_POINT_free = self._lib.EC_POINT_free
self.EC_POINT_free.restype = None
self.EC_POINT_free.argtypes = [ctypes.c_void_p]
self.BN_CTX_free = self._lib.BN_CTX_free
self.BN_CTX_free.restype = None
self.BN_CTX_free.argtypes = [ctypes.c_void_p]
self.EC_POINT_mul = self._lib.EC_POINT_mul
self.EC_POINT_mul.restype = None
self.EC_POINT_mul.argtypes = [ctypes.c_void_p, ctypes.c_void_p, ctypes.c_void_p, ctypes.c_void_p, ctypes.c_void_p]
self.EC_POINT_add = self._lib.EC_POINT_add
self.EC_POINT_add.resType = None
self.EC_POINT_add.argtypes = [ctypes.c_void_p, ctypes.c_void_p, ctypes.c_void_p, ctypes.c_void_p, ctypes.c_void_p]
self.EC_KEY_set_private_key = self._lib.EC_KEY_set_private_key
self.EC_KEY_set_private_key.restype = ctypes.c_int
self.EC_KEY_set_private_key.argtypes = [ctypes.c_void_p,
ctypes.c_void_p]
self.ECDH_OpenSSL = self._lib.ECDH_OpenSSL
self._lib.ECDH_OpenSSL.restype = ctypes.c_void_p
self._lib.ECDH_OpenSSL.argtypes = []
self.BN_CTX_new = self._lib.BN_CTX_new
self._lib.BN_CTX_new.restype = ctypes.c_void_p
self._lib.BN_CTX_new.argtypes = []
self.ECDH_set_method = self._lib.ECDH_set_method
self._lib.ECDH_set_method.restype = ctypes.c_int
self._lib.ECDH_set_method.argtypes = [ctypes.c_void_p, ctypes.c_void_p]
self.ECDH_compute_key = self._lib.ECDH_compute_key
self.ECDH_compute_key.restype = ctypes.c_int
self.ECDH_compute_key.argtypes = [ctypes.c_void_p,
ctypes.c_int, ctypes.c_void_p, ctypes.c_void_p]
self.EVP_CipherInit_ex = self._lib.EVP_CipherInit_ex
self.EVP_CipherInit_ex.restype = ctypes.c_int
self.EVP_CipherInit_ex.argtypes = [ctypes.c_void_p,
ctypes.c_void_p, ctypes.c_void_p]
self.EVP_CIPHER_CTX_new = self._lib.EVP_CIPHER_CTX_new
self.EVP_CIPHER_CTX_new.restype = ctypes.c_void_p
self.EVP_CIPHER_CTX_new.argtypes = []
# Cipher
self.EVP_aes_128_cfb128 = self._lib.EVP_aes_128_cfb128
self.EVP_aes_128_cfb128.restype = ctypes.c_void_p
self.EVP_aes_128_cfb128.argtypes = []
self.EVP_aes_256_cfb128 = self._lib.EVP_aes_256_cfb128
self.EVP_aes_256_cfb128.restype = ctypes.c_void_p
self.EVP_aes_256_cfb128.argtypes = []
self.EVP_aes_128_cbc = self._lib.EVP_aes_128_cbc
self.EVP_aes_128_cbc.restype = ctypes.c_void_p
self.EVP_aes_128_cbc.argtypes = []
self.EVP_aes_256_cbc = self._lib.EVP_aes_256_cbc
self.EVP_aes_256_cbc.restype = ctypes.c_void_p
self.EVP_aes_256_cbc.argtypes = []
#self.EVP_aes_128_ctr = self._lib.EVP_aes_128_ctr
#self.EVP_aes_128_ctr.restype = ctypes.c_void_p
#self.EVP_aes_128_ctr.argtypes = []
#self.EVP_aes_256_ctr = self._lib.EVP_aes_256_ctr
#self.EVP_aes_256_ctr.restype = ctypes.c_void_p
#self.EVP_aes_256_ctr.argtypes = []
self.EVP_aes_128_ofb = self._lib.EVP_aes_128_ofb
self.EVP_aes_128_ofb.restype = ctypes.c_void_p
self.EVP_aes_128_ofb.argtypes = []
self.EVP_aes_256_ofb = self._lib.EVP_aes_256_ofb
self.EVP_aes_256_ofb.restype = ctypes.c_void_p
self.EVP_aes_256_ofb.argtypes = []
self.EVP_bf_cbc = self._lib.EVP_bf_cbc
self.EVP_bf_cbc.restype = ctypes.c_void_p
self.EVP_bf_cbc.argtypes = []
self.EVP_bf_cfb64 = self._lib.EVP_bf_cfb64
self.EVP_bf_cfb64.restype = ctypes.c_void_p
self.EVP_bf_cfb64.argtypes = []
self.EVP_rc4 = self._lib.EVP_rc4
self.EVP_rc4.restype = ctypes.c_void_p
self.EVP_rc4.argtypes = []
self.EVP_CIPHER_CTX_cleanup = self._lib.EVP_CIPHER_CTX_cleanup
self.EVP_CIPHER_CTX_cleanup.restype = ctypes.c_int
self.EVP_CIPHER_CTX_cleanup.argtypes = [ctypes.c_void_p]
self.EVP_CIPHER_CTX_free = self._lib.EVP_CIPHER_CTX_free
self.EVP_CIPHER_CTX_free.restype = None
self.EVP_CIPHER_CTX_free.argtypes = [ctypes.c_void_p]
self.EVP_CipherUpdate = self._lib.EVP_CipherUpdate
self.EVP_CipherUpdate.restype = ctypes.c_int
self.EVP_CipherUpdate.argtypes = [ctypes.c_void_p,
ctypes.c_void_p, ctypes.c_void_p, ctypes.c_void_p, ctypes.c_int]
self.EVP_CipherFinal_ex = self._lib.EVP_CipherFinal_ex
self.EVP_CipherFinal_ex.restype = ctypes.c_int
self.EVP_CipherFinal_ex.argtypes = [ctypes.c_void_p,
ctypes.c_void_p, ctypes.c_void_p]
self.EVP_DigestInit = self._lib.EVP_DigestInit
self.EVP_DigestInit.restype = ctypes.c_int
self._lib.EVP_DigestInit.argtypes = [ctypes.c_void_p, ctypes.c_void_p]
self.EVP_DigestUpdate = self._lib.EVP_DigestUpdate
self.EVP_DigestUpdate.restype = ctypes.c_int
self.EVP_DigestUpdate.argtypes = [ctypes.c_void_p,
ctypes.c_void_p, ctypes.c_int]
self.EVP_DigestFinal = self._lib.EVP_DigestFinal
self.EVP_DigestFinal.restype = ctypes.c_int
self.EVP_DigestFinal.argtypes = [ctypes.c_void_p,
ctypes.c_void_p, ctypes.c_void_p]
self.EVP_ecdsa = self._lib.EVP_ecdsa
self._lib.EVP_ecdsa.restype = ctypes.c_void_p
self._lib.EVP_ecdsa.argtypes = []
self.ECDSA_sign = self._lib.ECDSA_sign
self.ECDSA_sign.restype = ctypes.c_int
self.ECDSA_sign.argtypes = [ctypes.c_int, ctypes.c_void_p,
ctypes.c_int, ctypes.c_void_p, ctypes.c_void_p, ctypes.c_void_p]
self.ECDSA_verify = self._lib.ECDSA_verify
self.ECDSA_verify.restype = ctypes.c_int
self.ECDSA_verify.argtypes = [ctypes.c_int, ctypes.c_void_p,
ctypes.c_int, ctypes.c_void_p, ctypes.c_int, ctypes.c_void_p]
self.EVP_MD_CTX_create = self._lib.EVP_MD_CTX_create
self.EVP_MD_CTX_create.restype = ctypes.c_void_p
self.EVP_MD_CTX_create.argtypes = []
self.EVP_MD_CTX_init = self._lib.EVP_MD_CTX_init
self.EVP_MD_CTX_init.restype = None
self.EVP_MD_CTX_init.argtypes = [ctypes.c_void_p]
self.EVP_MD_CTX_destroy = self._lib.EVP_MD_CTX_destroy
self.EVP_MD_CTX_destroy.restype = None
self.EVP_MD_CTX_destroy.argtypes = [ctypes.c_void_p]
self.RAND_bytes = self._lib.RAND_bytes
self.RAND_bytes.restype = ctypes.c_int
self.RAND_bytes.argtypes = [ctypes.c_void_p, ctypes.c_int]
self.EVP_sha256 = self._lib.EVP_sha256
self.EVP_sha256.restype = ctypes.c_void_p
self.EVP_sha256.argtypes = []
self.i2o_ECPublicKey = self._lib.i2o_ECPublicKey
self.i2o_ECPublicKey.restype = ctypes.c_void_p
self.i2o_ECPublicKey.argtypes = [ctypes.c_void_p, ctypes.c_void_p]
self.EVP_sha512 = self._lib.EVP_sha512
self.EVP_sha512.restype = ctypes.c_void_p
self.EVP_sha512.argtypes = []
self.HMAC = self._lib.HMAC
self.HMAC.restype = ctypes.c_void_p
self.HMAC.argtypes = [ctypes.c_void_p, ctypes.c_void_p, ctypes.c_int,
ctypes.c_void_p, ctypes.c_int, ctypes.c_void_p, ctypes.c_void_p]
try:
self.PKCS5_PBKDF2_HMAC = self._lib.PKCS5_PBKDF2_HMAC
except:
# The above is not compatible with all versions of OSX.
self.PKCS5_PBKDF2_HMAC = self._lib.PKCS5_PBKDF2_HMAC_SHA1
self.PKCS5_PBKDF2_HMAC.restype = ctypes.c_int
self.PKCS5_PBKDF2_HMAC.argtypes = [ctypes.c_void_p, ctypes.c_int,
ctypes.c_void_p, ctypes.c_int,
ctypes.c_int, ctypes.c_void_p,
ctypes.c_int, ctypes.c_void_p]
self._set_ciphers()
self._set_curves()
def _set_ciphers(self):
self.cipher_algo = {
'aes-128-cbc': CipherName('aes-128-cbc', self.EVP_aes_128_cbc, 16),
'aes-256-cbc': CipherName('aes-256-cbc', self.EVP_aes_256_cbc, 16),
'aes-128-cfb': CipherName('aes-128-cfb', self.EVP_aes_128_cfb128, 16),
'aes-256-cfb': CipherName('aes-256-cfb', self.EVP_aes_256_cfb128, 16),
'aes-128-ofb': CipherName('aes-128-ofb', self._lib.EVP_aes_128_ofb, 16),
'aes-256-ofb': CipherName('aes-256-ofb', self._lib.EVP_aes_256_ofb, 16),
#'aes-128-ctr': CipherName('aes-128-ctr', self._lib.EVP_aes_128_ctr, 16),
#'aes-256-ctr': CipherName('aes-256-ctr', self._lib.EVP_aes_256_ctr, 16),
'bf-cfb': CipherName('bf-cfb', self.EVP_bf_cfb64, 8),
'bf-cbc': CipherName('bf-cbc', self.EVP_bf_cbc, 8),
'rc4': CipherName('rc4', self.EVP_rc4, 128), # 128 is the initialisation size not block size
}
def _set_curves(self):
self.curves = {
'secp112r1': 704,
'secp112r2': 705,
'secp128r1': 706,
'secp128r2': 707,
'secp160k1': 708,
'secp160r1': 709,
'secp160r2': 710,
'secp192k1': 711,
'secp224k1': 712,
'secp224r1': 713,
'secp256k1': 714,
'secp384r1': 715,
'secp521r1': 716,
'sect113r1': 717,
'sect113r2': 718,
'sect131r1': 719,
'sect131r2': 720,
'sect163k1': 721,
'sect163r1': 722,
'sect163r2': 723,
'sect193r1': 724,
'sect193r2': 725,
'sect233k1': 726,
'sect233r1': 727,
'sect239k1': 728,
'sect283k1': 729,
'sect283r1': 730,
'sect409k1': 731,
'sect409r1': 732,
'sect571k1': 733,
'sect571r1': 734,
}
def BN_num_bytes(self, x):
"""
returns the length of a BN (OpenSSl API)
"""
return int((self.BN_num_bits(x) + 7) / 8)
def get_cipher(self, name):
"""
returns the OpenSSL cipher instance
"""
if name not in self.cipher_algo:
raise Exception("Unknown cipher")
return self.cipher_algo[name]
def get_curve(self, name):
"""
returns the id of a elliptic curve
"""
if name not in self.curves:
raise Exception("Unknown curve")
return self.curves[name]
def get_curve_by_id(self, id):
"""
returns the name of a elliptic curve with his id
"""
res = None
for i in self.curves:
if self.curves[i] == id:
res = i
break
if res is None:
raise Exception("Unknown curve")
return res
def rand(self, size):
"""
OpenSSL random function
"""
buffer = self.malloc(0, size)
# This pyelliptic library, by default, didn't check the return value of RAND_bytes. It is
# evidently possible that it returned an error and not-actually-random data. However, in
# tests on various operating systems, while generating hundreds of gigabytes of random
# strings of various sizes I could not get an error to occur. Also Bitcoin doesn't check
# the return value of RAND_bytes either.
# Fixed in Bitmessage version 0.4.2 (in source code on 2013-10-13)
while self.RAND_bytes(buffer, size) != 1:
import time
time.sleep(1)
return buffer.raw
def malloc(self, data, size):
"""
returns a create_string_buffer (ctypes)
"""
buffer = None
if data != 0:
if sys.version_info.major == 3 and isinstance(data, type('')):
data = data.encode()
buffer = self.create_string_buffer(data, size)
else:
buffer = self.create_string_buffer(size)
return buffer
try:
OpenSSL = _OpenSSL('libcrypto.so')
except:
try:
OpenSSL = _OpenSSL('libeay32.dll')
except:
try:
OpenSSL = _OpenSSL('libcrypto.dylib')
except:
try:
# try homebrew installation
OpenSSL = _OpenSSL('/usr/local/opt/openssl/lib/libcrypto.dylib')
except:
try:
# Load it from an Bitmessage.app on OSX
OpenSSL = _OpenSSL('./../Frameworks/libcrypto.dylib')
except:
try:
from os import path
lib_path = path.join(sys._MEIPASS, "libeay32.dll")
OpenSSL = _OpenSSL(lib_path)
except:
if 'linux' in sys.platform or 'darwin' in sys.platform or 'freebsd' in sys.platform:
try:
from ctypes.util import find_library
OpenSSL = _OpenSSL(find_library('ssl'))
except Exception, err:
sys.stderr.write('(On Linux) Couldn\'t find and load the OpenSSL library. You must install it. If you believe that you already have it installed, this exception information might be of use:\n')
from ctypes.util import find_library
OpenSSL = _OpenSSL(find_library('ssl'))
else:
raise Exception("Couldn't find and load the OpenSSL library. You must install it.")
Amount keys Test count Total time Total signature size
2 10 0.1789999008178711 2760
3 10 0.24600005149841309 3720
5 10 0.3810000419616699 5640
10 10 0.7860000133514404 10440
20 10 1.4720001220703125 20039
30 10 2.128999948501587 29639
50 10 3.5460000038146973 48833
100 10 7.050999879837036 96833
200 10 14.02999997138977 192832
300 10 21.052000045776367 288828
500 10 36.519999980926514 480825
1000 10 76.91200017929077 960797
2000 10 154.90100002288818 1920764
3000 10 225.71000003814697 2880699
5000 10 356.7460000514984 4800625
10000 10 708.9110000133514 9600412
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment