-
-
Save biemster/2a4fb4b7ede6a93b978a7f7e1bb275da to your computer and use it in GitHub Desktop.
example of bitcoin curve calculations in python
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
""" | |
Example of how calculations on the secp256k1 curve work. | |
secp256k1 is the name of the elliptic curve used by bitcoin | |
see http://bitcoin.stackexchange.com/questions/25382 | |
""" | |
p = 2**256 - 2**32 - 977 | |
def inverse(x, p): | |
""" | |
Calculate the modular inverse of x ( mod p ) | |
the modular inverse is a number such that: | |
(inverse(x, p) * x) % p == 1 | |
you could think of this as: 1/x | |
""" | |
inv1 = 1 | |
inv2 = 0 | |
while p != 1 and p!=0: | |
inv1, inv2 = inv2, inv1 - inv2 * (x / p) | |
x, p = p, x % p | |
return inv2 | |
def dblpt(pt, p): | |
""" | |
Calculate pt+pt = 2*pt | |
""" | |
if pt is None: | |
return None | |
(x,y)= pt | |
if y==0: | |
return None | |
# Calculate 3*x^2/(2*y) modulus p | |
slope= 3*pow(x,2,p)*inverse(2*y,p) | |
xsum= pow(slope,2,p)-2*x | |
ysum= slope*(x-xsum)-y | |
return (xsum%p, ysum%p) | |
def addpt(p1,p2, p): | |
""" | |
Calculate p1+p2 | |
""" | |
if p1 is None or p2 is None: | |
return None | |
(x1,y1)= p1 | |
(x2,y2)= p2 | |
if x1==x2: | |
return dblpt(p1, p) | |
# calculate (y1-y2)/(x1-x2) modulus p | |
slope=(y1-y2)*inverse(x1-x2, p) | |
xsum= pow(slope,2,p)-(x1+x2) | |
ysum= slope*(x1-xsum)-y1 | |
return (xsum%p, ysum%p) | |
def ptmul(pt,a, p): | |
""" | |
Scalar multiplication: calculate pt*a | |
basically adding pt to itself a times | |
""" | |
scale= pt | |
acc=None | |
while a: | |
if a&1: | |
if acc is None: | |
acc= scale | |
else: | |
acc= addpt(acc,scale, p) | |
scale= dblpt(scale, p) | |
a >>= 1 | |
return acc | |
def isoncurve(pt,p): | |
""" | |
returns True when pt is on the secp256k1 curve | |
""" | |
(x,y)= pt | |
return (y**2 - x**3 - 7)%p == 0 | |
# (Gx,Gy) is the secp256k1 generator point | |
Gx=0x79BE667EF9DCBBAC55A06295CE870B07029BFCDB2DCE28D959F2815B16F81798 | |
Gy=0x483ADA7726A3C4655DA4FBFC0E1108A8FD17B448A68554199C47D08FFB10D4B8 | |
g= (Gx,Gy) | |
g2=dblpt(g, p) | |
print " 2*G= (%x,%x)" % g2 | |
print " G+2*G= (%x,%x)" % addpt(g, g2, p) | |
print "2*G+2*G= (%x,%x)" % addpt(g2, g2, p) | |
privkey= 0xf8ef380d6c05116dbed78bfdd6e6625e57426af9a082b81c2fa27b06984c11f3 | |
print " -> pubkey= (%x,%x)" % ptmul(g, privkey, p) | |
""" | |
for reference, the numbers printed should be: | |
2*G= (c6047f9441ed7d6d3045406e95c07cd85c778e4b8cef3ca7abac09b95c709ee5,1ae168fea63dc339a3c58419466ceaeef7f632653266d0e1236431a950cfe52a) | |
G+2*G= (f9308a019258c31049344f85f89d5229b531c845836f99b08601f113bce036f9,388f7b0f632de8140fe337e62a37f3566500a99934c2231b6cb9fd7584b8e672) | |
2*G+2*G= (e493dbf1c10d80f3581e4904930b1404cc6c13900ee0758474fa94abe8c4cd13,51ed993ea0d455b75642e2098ea51448d967ae33bfbdfe40cfe97bdc47739922) | |
-> pubkey= (71ee918bc19bb566e3a5f12c0cd0de620bec1025da6e98951355ebbde8727be3,37b3650efad4190b7328b1156304f2e9e23dbb7f2da50999dde50ea73b4c2688) | |
""" |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment