Last active
April 30, 2021 01:35
-
-
Save biswajitcsecu/939fc8eae74e2a575c1fe4c8048022c4 to your computer and use it in GitHub Desktop.
ImageClassificationTorchDemo
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from __future__ import print_function, division | |
import os | |
import torch | |
from torchvision import transforms, datasets | |
import pandas as pd | |
from skimage import io, transform | |
import numpy as np | |
import matplotlib.pyplot as plt | |
from torch.utils.data import Dataset, DataLoader | |
from torchvision import transforms, utils | |
import torchvision | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from torch.autograd import Variable | |
import torch.utils.data as data | |
import torchvision | |
from torchvision import transforms | |
import warnings | |
warnings.filterwarnings("ignore") | |
train_data_path= '/home/donvex/Projects/DLCNN/hymenoptera/train/' | |
test_data_path= '/home/donvex/Projects/DLCNN/hymenoptera/val/' | |
mean =[.4363,.4328, .3292] | |
std =[.2129,.2075, .2038] | |
train_transforms = transforms.Compose([ | |
transforms.Resize([224,224]), | |
transforms.RandomHorizontalFlip(), | |
transforms.RandomRotation(10), | |
transforms.ToTensor(), | |
transforms.Normalize(torch.Tensor(mean),torch.Tensor(std)) | |
]) | |
test_transforms = transforms.Compose([ | |
transforms.Resize([224,224]), | |
transforms.ToTensor(), | |
transforms.Normalize(torch.Tensor(mean), torch.Tensor(std)) | |
]) | |
train_dataset = torchvision.datasets.ImageFolder(root=train_data_path,transform=train_transforms) | |
test_dataset = torchvision.datasets.ImageFolder(root=test_data_path,transform=test_transforms) | |
def show_transformed_image(dataset): | |
loder = torch.utils.data.DataLoader(dataset,batch_size=8,shuffle=True) | |
batch = next(iter(loder)) | |
images,labels = batch | |
grid= torchvision.utils.make_grid(images,nrow=4) | |
fig=plt.figure(figsize=(12,10)) | |
plt.imshow(np.transpose(grid,(1,2,0))) | |
print('labes: ',labels) | |
fig.tight_layout() | |
plt.show() | |
plt.close(fig) | |
show_transformed_image(train_dataset) | |
train_loader = torch.utils.data.DataLoader(train_dataset,batch_size=32,shuffle=True) | |
test_loader = torch.utils.data.DataLoader(test_dataset,batch_size=32,shuffle=False) | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment