Skip to content

Instantly share code, notes, and snippets.

@bitdivine
Forked from pprett/boston.json
Last active August 29, 2015 14:14
Show Gist options
  • Save bitdivine/02c951c9f9450de38f55 to your computer and use it in GitHub Desktop.
Save bitdivine/02c951c9f9450de38f55 to your computer and use it in GitHub Desktop.
{"error": 42716.2954, "samples": 506, "value": [22.532806324110698], "label": "RM <= 6.94", "type": "split", "children": [{"error": 17317.3210, "samples": 430, "value": [19.93372093023257], "label": "LSTAT <= 14.40", "type": "split", "children": [{"error": 6632.2175, "samples": 255, "value": [23.349803921568636], "label": "DIS <= 1.38", "type": "split", "children": [{"error": 390.7280, "samples": 5, "value": [45.58], "label": "CRIM <= 10.59", "type": "split", "children": [{"error": 0.0000, "samples": 4, "value": [50.0], "label": "Leaf - 4", "type": "leaf"}, {"error": 0.0000, "samples": 1, "value": [27.9], "label": "Leaf - 5", "type": "leaf"}]}, {"error": 3721.1632, "samples": 250, "value": [22.90520000000001], "label": "RM <= 6.54", "type": "split", "children": [{"error": 1636.0675, "samples": 195, "value": [21.629743589743576], "label": "LSTAT <= 7.57", "type": "split", "children": [{"error": 129.6307, "samples": 43, "value": [23.969767441860473], "label": "TAX <= 222.50", "type": "split", "children": [{"error": 0.0000, "samples": 1, "value": [28.7], "label": "Leaf - 9", "type": "leaf"}, {"error": 106.7229, "samples": 42, "value": [23.85714285714286], "label": "Leaf - 10", "type": "leaf"}]}, {"error": 1204.3720, "samples": 152, "value": [20.967763157894723], "label": "TAX <= 208.00", "type": "split", "children": [{"error": 161.6000, "samples": 5, "value": [26.9], "label": "Leaf - 12", "type": "leaf"}, {"error": 860.8299, "samples": 147, "value": [20.765986394557814], "label": "Leaf - 13", "type": "leaf"}]}]}, {"error": 643.1691, "samples": 55, "value": [27.427272727272726], "label": "TAX <= 269.00", "type": "split", "children": [{"error": 91.4612, "samples": 17, "value": [30.24117647058823], "label": "PTRATIO <= 17.85", "type": "split", "children": [{"error": 26.9890, "samples": 10, "value": [31.71], "label": "Leaf - 16", "type": "leaf"}, {"error": 12.0771, "samples": 7, "value": [28.142857142857142], "label": "Leaf - 17", "type": "leaf"}]}, {"error": 356.8821, "samples": 38, "value": [26.16842105263158], "label": "NOX <= 0.53", "type": "split", "children": [{"error": 232.6986, "samples": 29, "value": [27.006896551724143], "label": "Leaf - 19", "type": "leaf"}, {"error": 38.1000, "samples": 9, "value": [23.466666666666665], "label": "Leaf - 20", "type": "leaf"}]}]}]}]}, {"error": 3373.2512, "samples": 175, "value": [14.955999999999996], "label": "NOX <= 0.61", "type": "split", "children": [{"error": 833.2624, "samples": 68, "value": [18.123529411764697], "label": "CRIM <= 0.55", "type": "split", "children": [{"error": 272.4123, "samples": 39, "value": [19.738461538461536], "label": "AGE <= 60.55", "type": "split", "children": [{"error": 22.5743, "samples": 7, "value": [22.071428571428573], "label": "NOX <= 0.46", "type": "split", "children": [{"error": 0.9800, "samples": 2, "value": [19.6], "label": "Leaf - 25", "type": "leaf"}, {"error": 4.4920, "samples": 5, "value": [23.060000000000002], "label": "Leaf - 26", "type": "leaf"}]}, {"error": 203.4047, "samples": 32, "value": [19.228125], "label": "LSTAT <= 24.69", "type": "split", "children": [{"error": 150.4386, "samples": 28, "value": [19.692857142857147], "label": "Leaf - 28", "type": "leaf"}, {"error": 4.5875, "samples": 4, "value": [15.975000000000001], "label": "Leaf - 29", "type": "leaf"}]}]}, {"error": 322.3524, "samples": 29, "value": [15.951724137931038], "label": "RM <= 6.84", "type": "split", "children": [{"error": 184.2268, "samples": 28, "value": [15.539285714285716], "label": "B <= 26.72", "type": "split", "children": [{"error": 1.1250, "samples": 2, "value": [10.95], "label": "Leaf - 32", "type": "leaf"}, {"error": 137.7385, "samples": 26, "value": [15.892307692307696], "label": "Leaf - 33", "type": "leaf"}]}, {"error": 0.0000, "samples": 1, "value": [27.5], "label": "Leaf - 34", "type": "leaf"}]}]}, {"error": 1424.1422, "samples": 107, "value": [12.942990654205609], "label": "LSTAT <= 19.65", "type": "split", "children": [{"error": 316.3804, "samples": 51, "value": [15.480392156862749], "label": "CRIM <= 12.22", "type": "split", "children": [{"error": 232.6349, "samples": 47, "value": [15.842553191489367], "label": "CRIM <= 5.77", "type": "split", "children": [{"error": 132.1443, "samples": 28, "value": [16.535714285714285], "label": "Leaf - 38", "type": "leaf"}, {"error": 67.2116, "samples": 19, "value": [14.821052631578949], "label": "Leaf - 39", "type": "leaf"}]}, {"error": 5.1475, "samples": 4, "value": [11.225], "label": "CRIM <= 14.17", "type": "split", "children": [{"error": 0.5000, "samples": 2, "value": [12.2], "label": "Leaf - 41", "type": "leaf"}, {"error": 0.8450, "samples": 2, "value": [10.25], "label": "Leaf - 42", "type": "leaf"}]}]}, {"error": 480.3621, "samples": 56, "value": [10.632142857142854], "label": "TAX <= 551.50", "type": "split", "children": [{"error": 23.5290, "samples": 10, "value": [14.41], "label": "DIS <= 1.38", "type": "split", "children": [{"error": 1.2800, "samples": 2, "value": [12.600000000000001], "label": "Leaf - 45", "type": "leaf"}, {"error": 14.0588, "samples": 8, "value": [14.8625], "label": "Leaf - 46", "type": "leaf"}]}, {"error": 283.0846, "samples": 46, "value": [9.81086956521739], "label": "DIS <= 1.41", "type": "split", "children": [{"error": 11.0971, "samples": 7, "value": [12.857142857142858], "label": "Leaf - 48", "type": "leaf"}, {"error": 195.3697, "samples": 39, "value": [9.264102564102567], "label": "Leaf - 49", "type": "leaf"}]}]}]}]}]}, {"error": 6059.4193, "samples": 76, "value": [37.23815789473684], "label": "RM <= 7.44", "type": "split", "children": [{"error": 1899.6122, "samples": 46, "value": [32.11304347826087], "label": "CRIM <= 7.39", "type": "split", "children": [{"error": 864.7674, "samples": 43, "value": [33.348837209302324], "label": "DIS <= 1.89", "type": "split", "children": [{"error": 37.8450, "samples": 2, "value": [45.65], "label": "INDUS <= 18.84", "type": "split", "children": [{"error": 0.0000, "samples": 1, "value": [50.0], "label": "Leaf - 54", "type": "leaf"}, {"error": 0.0000, "samples": 1, "value": [41.3], "label": "Leaf - 55", "type": "leaf"}]}, {"error": 509.5224, "samples": 41, "value": [32.74878048780488], "label": "NOX <= 0.49", "type": "split", "children": [{"error": 135.3867, "samples": 27, "value": [34.15555555555556], "label": "AGE <= 11.95", "type": "split", "children": [{"error": 0.1800, "samples": 2, "value": [29.3], "label": "Leaf - 58", "type": "leaf"}, {"error": 84.2816, "samples": 25, "value": [34.544000000000004], "label": "Leaf - 59", "type": "leaf"}]}, {"error": 217.6521, "samples": 14, "value": [30.03571428571428], "label": "RM <= 7.12", "type": "split", "children": [{"error": 49.6286, "samples": 7, "value": [26.914285714285715], "label": "Leaf - 61", "type": "leaf"}, {"error": 31.6171, "samples": 7, "value": [33.15714285714286], "label": "Leaf - 62", "type": "leaf"}]}]}]}, {"error": 27.9200, "samples": 3, "value": [14.4], "label": "RM <= 7.14", "type": "split", "children": [{"error": 0.0000, "samples": 1, "value": [10.4], "label": "Leaf - 64", "type": "leaf"}, {"error": 3.9200, "samples": 2, "value": [16.4], "label": "CRIM <= 13.93", "type": "split", "children": [{"error": 0.0000, "samples": 1, "value": [17.8], "label": "Leaf - 66", "type": "leaf"}, {"error": 0.0000, "samples": 1, "value": [15.0], "label": "Leaf - 67", "type": "leaf"}]}]}]}, {"error": 1098.8497, "samples": 30, "value": [45.09666666666668], "label": "B <= 361.92", "type": "split", "children": [{"error": 0.0000, "samples": 1, "value": [21.9], "label": "Leaf - 69", "type": "leaf"}, {"error": 542.2097, "samples": 29, "value": [45.896551724137936], "label": "PTRATIO <= 14.80", "type": "split", "children": [{"error": 112.3800, "samples": 14, "value": [48.300000000000004], "label": "RM <= 7.71", "type": "split", "children": [{"error": 37.8475, "samples": 4, "value": [44.725], "label": "CRIM <= 1.00", "type": "split", "children": [{"error": 0.7467, "samples": 3, "value": [42.96666666666667], "label": "Leaf - 73", "type": "leaf"}, {"error": 0.0000, "samples": 1, "value": [50.0], "label": "Leaf - 74", "type": "leaf"}]}, {"error": 2.9610, "samples": 10, "value": [49.730000000000004], "label": "LSTAT <= 3.75", "type": "split", "children": [{"error": 0.0000, "samples": 6, "value": [50.0], "label": "Leaf - 76", "type": "leaf"}, {"error": 1.8675, "samples": 4, "value": [49.325], "label": "Leaf - 77", "type": "leaf"}]}]}, {"error": 273.4773, "samples": 15, "value": [43.653333333333336], "label": "B <= 385.48", "type": "split", "children": [{"error": 16.4920, "samples": 5, "value": [47.160000000000004], "label": "CRIM <= 0.32", "type": "split", "children": [{"error": 1.8467, "samples": 3, "value": [45.833333333333336], "label": "Leaf - 80", "type": "leaf"}, {"error": 1.4450, "samples": 2, "value": [49.15], "label": "Leaf - 81", "type": "leaf"}]}, {"error": 164.7600, "samples": 10, "value": [41.9], "label": "CRIM <= 0.06", "type": "split", "children": [{"error": 19.7067, "samples": 3, "value": [46.46666666666667], "label": "Leaf - 83", "type": "leaf"}, {"error": 55.6771, "samples": 7, "value": [39.94285714285714], "label": "Leaf - 84", "type": "leaf"}]}]}]}]}]}]}
import numpy as np
from sklearn.tree import _tree
def export_json(decision_tree, out_file=None, feature_names=None):
"""Export a decision tree in JSON format.
This function generates a JSON representation of the decision tree,
which is then written into `out_file`. Once exported, graphical renderings
can be generated using, for example::
$ dot -Tps tree.dot -o tree.ps (PostScript format)
$ dot -Tpng tree.dot -o tree.png (PNG format)
Parameters
----------
decision_tree : decision tree classifier
The decision tree to be exported to JSON.
out : file object or string, optional (default=None)
Handle or name of the output file.
feature_names : list of strings, optional (default=None)
Names of each of the features.
Returns
-------
out_file : file object
The file object to which the tree was exported. The user is
expected to `close()` this object when done with it.
Examples
--------
>>> from sklearn.datasets import load_iris
>>> from sklearn import tree
>>> clf = tree.DecisionTreeClassifier()
>>> iris = load_iris()
>>> clf = clf.fit(iris.data, iris.target)
>>> import tempfile
>>> out_file = tree.export_json(clf, out_file=tempfile.TemporaryFile())
>>> out_file.close()
"""
import numpy as np
from sklearn.tree import _tree
def arr_to_py(arr):
arr = arr.ravel()
wrapper = float
if np.issubdtype(arr.dtype, np.int):
wrapper = int
return map(wrapper, arr.tolist())
def node_to_str(tree, node_id):
node_repr = '"error": %.4f, "samples": %d, "value": %s' \
% (tree.init_error[node_id],
tree.n_samples[node_id],
arr_to_py(tree.value[node_id]))
if tree.children_left[node_id] != _tree.TREE_LEAF:
if feature_names is not None:
feature = feature_names[tree.feature[node_id]]
else:
feature = "X[%s]" % tree.feature[node_id]
label = '"label": "%s <= %.2f"' % (feature,
tree.threshold[node_id])
node_type = '"type": "split"'
else:
node_type = '"type": "leaf"'
label = '"label": "Leaf - %d"' % node_id
node_repr = ", ".join((node_repr, label, node_type))
return node_repr
def recurse(tree, node_id, parent=None):
if node_id == _tree.TREE_LEAF:
raise ValueError("Invalid node_id %s" % _tree.TREE_LEAF)
left_child = tree.children_left[node_id]
right_child = tree.children_right[node_id]
# Open node with description
out_file.write('{%s' % node_to_str(tree, node_id))
# write children
if left_child != _tree.TREE_LEAF: # and right_child != _tree.TREE_LEAF
out_file.write(', "children": [')
recurse(tree, left_child, node_id)
out_file.write(', ')
recurse(tree, right_child, node_id)
out_file.write(']')
# close node
out_file.write('}')
if out_file is None:
out_file = open("tree.json", "w")
elif isinstance(out_file, basestring):
out_file = open(out_file, "w")
if isinstance(decision_tree, _tree.Tree):
recurse(decision_tree, 0)
else:
recurse(decision_tree.tree_, 0)
return out_file
<!DOCTYPE html>
<html>
<head>
<meta http-equiv="Content-Type" content="text/html;charset=utf-8"/>
<script type="text/javascript" src="http://mbostock.github.com/d3/d3.js?2.9.0"></script>
<style type="text/css">
body {
font-family: "Helvetica Neue", Helvetica;
}
.hint {
font-size: 12px;
color: #999;
}
.node rect {
cursor: pointer;
fill: #fff;
stroke-width: 1.5px;
}
.node text {
font-size: 11px;
}
path.link {
fill: none;
stroke: #ccc;
}
input.param-text {
width: 80%;
}
</style>
</head>
<body>
<div id="body">
<div id="footer">
Decision Tree viewer
<div class="hint">enter the URL at which your decision tree may be found, in JSON (<a href="iris.json">sample</a>)(<a href="https://gist.github.com/bitdivine/02c951c9f9450de38f55/">src</a>)</div>
<div id="param">
<form id="parameters" onsubmit="d3.json(this.elements.dataurl.value,load_dataset);return false;">
<input type="text" name="dataurl" placeholder="iris.json" class="param-text">
</form>
</id>
</div>
</div>
<script type="text/javascript">
var m = [20, 120, 20, 120],
w = 1280 - m[1] - m[3],
h = 800 - m[0] - m[2],
i = 0,
rect_width = 80,
rect_height = 20,
max_link_width = 20,
min_link_width = 1.5,
char_to_pxl = 6,
root;
var tree = d3.layout.tree()
.size([h, w]);
var diagonal = d3.svg.diagonal()
.projection(function(d) { return [d.x, d.y]; });
var vis = d3.select("#body").append("svg:svg")
.attr("width", w + m[1] + m[3])
.attr("height", h + m[0] + m[2] + 1000)
.append("svg:g")
.attr("transform", "translate(" + m[3] + "," + m[0] + ")");
// global scale for link width
var link_stoke_scale = d3.scale.linear();
var color_map = d3.scale.category10();
// stroke style of link - either color or function
var stroke_callback = "#ccc";
function load_dataset(json) {
root = json;
root.x0 = 0;
root.y0 = 0;
var n_samples = root.samples;
var n_labels = root.value.length;
if (n_labels >= 2) {
stroke_callback = mix_colors;
} else if (n_labels === 1) {
stroke_callback = mean_interpolation(root);
}
link_stoke_scale = d3.scale.linear()
.domain([0, n_samples])
.range([min_link_width, max_link_width]);
function toggleAll(d) {
if (d && d.children) {
d.children.forEach(toggleAll);
toggle(d);
}
}
// Initialize the display to show a few nodes.
root.children.forEach(toggleAll);
update(root);
}
function update(source) {
var duration = d3.event && d3.event.altKey ? 5000 : 500;
// Compute the new tree layout.
var nodes = tree.nodes(root).reverse();
// Normalize for fixed-depth.
nodes.forEach(function(d) { d.y = d.depth * 180; });
// Update the nodes…
var node = vis.selectAll("g.node")
.data(nodes, function(d) { return d.id || (d.id = ++i); });
// Enter any new nodes at the parent's previous position.
var nodeEnter = node.enter().append("svg:g")
.attr("class", "node")
.attr("transform", function(d) { return "translate(" + source.x0 + "," + source.y0 + ")"; })
.on("click", function(d) { toggle(d); update(d); });
nodeEnter.append("svg:rect")
.attr("x", function(d) {
var label = node_label(d);
var text_len = label.length * char_to_pxl;
var width = d3.max([rect_width, text_len])
return -width / 2;
})
.attr("width", 1e-6)
.attr("height", 1e-6)
.attr("rx", function(d) { return d.type === "split" ? 2 : 0;})
.attr("ry", function(d) { return d.type === "split" ? 2 : 0;})
.style("stroke", function(d) { return d.type === "split" ? "steelblue" : "olivedrab";})
.style("fill", function(d) { return d._children ? "lightsteelblue" : "#fff"; });
nodeEnter.append("svg:text")
.attr("dy", "12px")
.attr("text-anchor", "middle")
.text(node_label)
.style("fill-opacity", 1e-6);
// Transition nodes to their new position.
var nodeUpdate = node.transition()
.duration(duration)
.attr("transform", function(d) { return "translate(" + d.x + "," + d.y + ")"; });
nodeUpdate.select("rect")
.attr("width", function(d) {
var label = node_label(d);
var text_len = label.length * char_to_pxl;
var width = d3.max([rect_width, text_len])
return width;
})
.attr("height", rect_height)
.style("fill", function(d) { return d._children ? "lightsteelblue" : "#fff"; });
nodeUpdate.select("text")
.style("fill-opacity", 1);
// Transition exiting nodes to the parent's new position.
var nodeExit = node.exit().transition()
.duration(duration)
.attr("transform", function(d) { return "translate(" + source.x + "," + source.y + ")"; })
.remove();
nodeExit.select("rect")
.attr("width", 1e-6)
.attr("height", 1e-6);
nodeExit.select("text")
.style("fill-opacity", 1e-6);
// Update the links
var link = vis.selectAll("path.link")
.data(tree.links(nodes), function(d) { return d.target.id; });
// Enter any new links at the parent's previous position.
link.enter().insert("svg:path", "g")
.attr("class", "link")
.attr("d", function(d) {
var o = {x: source.x0, y: source.y0};
return diagonal({source: o, target: o});
})
.transition()
.duration(duration)
.attr("d", diagonal)
.style("stroke-width", function(d) {return link_stoke_scale(d.target.samples);})
.style("stroke", stroke_callback);
// Transition links to their new position.
link.transition()
.duration(duration)
.attr("d", diagonal)
.style("stroke-width", function(d) {return link_stoke_scale(d.target.samples);})
.style("stroke", stroke_callback);
// Transition exiting nodes to the parent's new position.
link.exit().transition()
.duration(duration)
.attr("d", function(d) {
var o = {x: source.x, y: source.y};
return diagonal({source: o, target: o});
})
.remove();
// Stash the old positions for transition.
nodes.forEach(function(d) {
d.x0 = d.x;
d.y0 = d.y;
});
}
// Toggle children.
function toggle(d) {
if (d.children) {
d._children = d.children;
d.children = null;
} else {
d.children = d._children;
d._children = null;
}
}
// Node labels
function node_label(d) {
if (d.type === "leaf") {
// leaf
var formatter = d3.format(".2f");
var vals = [];
d.value.forEach(function(v) {
vals.push(formatter(v));
});
return "[" + vals.join(", ") + "]";
} else {
// split node
return d.label;
}
}
/**
* Mixes colors according to the relative frequency of classes.
*/
function mix_colors(d) {
var value = d.target.value;
var sum = d3.sum(value);
var col = d3.rgb(0, 0, 0);
value.forEach(function(val, i) {
var label_color = d3.rgb(color_map(i));
var mix_coef = val / sum;
col.r += mix_coef * label_color.r;
col.g += mix_coef * label_color.g;
col.b += mix_coef * label_color.b;
});
return col;
}
/**
* A linear interpolator for value[0].
*
* Useful for link coloring in regression trees.
*/
function mean_interpolation(root) {
var max = 1e-9,
min = 1e9;
function recurse(node) {
if (node.value[0] > max) {
max = node.value[0];
}
if (node.value[0] < min) {
min = node.value[0];
}
if (node.children) {
node.children.forEach(recurse);
}
}
recurse(root);
var scale = d3.scale.linear().domain([min, max])
.range(["#2166AC","#B2182B"]);
function interpolator(d) {
return scale(d.target.value[0]);
}
return interpolator;
}
</script>
</body>
</html>
{"error": 0.6667, "samples": 150, "value": [50.0, 50.0, 50.0], "label": "X[2] <= 2.45", "type": "split", "children": [{"error": 0.0000, "samples": 50, "value": [50.0, 0.0, 0.0], "label": "Leaf - 1", "type": "leaf"}, {"error": 0.5000, "samples": 100, "value": [0.0, 50.0, 50.0], "label": "X[3] <= 1.75", "type": "split", "children": [{"error": 0.1680, "samples": 54, "value": [0.0, 49.0, 5.0], "label": "X[2] <= 4.95", "type": "split", "children": [{"error": 0.0408, "samples": 48, "value": [0.0, 47.0, 1.0], "label": "X[3] <= 1.65", "type": "split", "children": [{"error": 0.0000, "samples": 47, "value": [0.0, 47.0, 0.0], "label": "Leaf - 5", "type": "leaf"}, {"error": 0.0000, "samples": 1, "value": [0.0, 0.0, 1.0], "label": "Leaf - 6", "type": "leaf"}]}, {"error": 0.4444, "samples": 6, "value": [0.0, 2.0, 4.0], "label": "X[3] <= 1.55", "type": "split", "children": [{"error": 0.0000, "samples": 3, "value": [0.0, 0.0, 3.0], "label": "Leaf - 8", "type": "leaf"}, {"error": 0.4444, "samples": 3, "value": [0.0, 2.0, 1.0], "label": "X[0] <= 6.95", "type": "split", "children": [{"error": 0.0000, "samples": 2, "value": [0.0, 2.0, 0.0], "label": "Leaf - 10", "type": "leaf"}, {"error": 0.0000, "samples": 1, "value": [0.0, 0.0, 1.0], "label": "Leaf - 11", "type": "leaf"}]}]}]}, {"error": 0.0425, "samples": 46, "value": [0.0, 1.0, 45.0], "label": "X[2] <= 4.85", "type": "split", "children": [{"error": 0.4444, "samples": 3, "value": [0.0, 1.0, 2.0], "label": "X[0] <= 5.95", "type": "split", "children": [{"error": 0.0000, "samples": 1, "value": [0.0, 1.0, 0.0], "label": "Leaf - 14", "type": "leaf"}, {"error": 0.0000, "samples": 2, "value": [0.0, 0.0, 2.0], "label": "Leaf - 15", "type": "leaf"}]}, {"error": 0.0000, "samples": 43, "value": [0.0, 0.0, 43.0], "label": "Leaf - 16", "type": "leaf"}]}]}]}
@bitdivine
Copy link
Author

To draw a decision tree with either sample data or your own, visit http://bitdivine.com/draw/dtree/

That is the HTML file only. Nothing else is needed.

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment