Created
January 31, 2023 22:32
-
-
Save bitnulleins/3b2e8f8f3f67b8f44c93ad8317c06767 to your computer and use it in GitHub Desktop.
Ordinal Classification / Ordinal Regression class
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from sklearn.base import BaseEstimator | |
import numpy as np | |
class OrdClass(BaseEstimator): | |
""" | |
Helper class that solves ordinal classification (classes that have an order to them eg cold,warm,hot) | |
Paper (2001): https://www.cs.waikato.ac.nz/~eibe/pubs/ordinal_tech_report.pdf | |
Fixed source from: https://github.com/garyongguanjie/Ordinal-Classifier | |
""" | |
def __init__(self,classifier=None,clf_args=None): | |
""" | |
y needs to be a number that start from 0 and increments by 1 | |
classifier object needs to be able to return a probability | |
""" | |
self.classifier = classifier | |
self.clfs = [] | |
self.clf_args = clf_args | |
self.final_prob = None | |
def fit(self,X,y,**fit): | |
self.X = X | |
self.y = y | |
import copy | |
no_of_classifiers = int(np.max(self.y)) #since y starts from 0 | |
self.classes_ = list(range(no_of_classifiers+1)) | |
for i in range(no_of_classifiers): | |
# make a copy of y because we want to change the values of y | |
copy_y = np.copy(self.y) | |
# make a binary classification here | |
copy_y[copy_y<=i] = 0 | |
copy_y[copy_y>i] = 1 | |
classifier = copy.deepcopy(self.classifier) | |
classifier.fit(self.X,copy_y,**fit) | |
self.clfs.append(classifier) | |
return self | |
def predict_proba(self,test): | |
prob_list = [] | |
final_prob = [] | |
length = len(self.clfs) | |
for clf in self.clfs: | |
prob_list.append(clf.predict_proba(test)[:,1]) | |
for i in range(length+1): | |
if i == 0: | |
final_prob.append(1-prob_list[i]) | |
elif i == length: | |
final_prob.append(prob_list[i-1]) | |
else: | |
final_prob.append(prob_list[i-1]-prob_list[i]) | |
answer = np.array(final_prob).transpose() | |
self.final_prob= answer | |
return answer | |
def predict(self,test): | |
self.predict_proba(test) | |
return np.argmax(self.final_prob,axis=1) | |
def score(self,X,y,sample_weight=None): | |
return accuracy_score(y, self.predict(X), sample_weight=sample_weight) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment