Skip to content

Instantly share code, notes, and snippets.

@bkaankuguoglu
Last active April 6, 2021 19:44
Show Gist options
  • Save bkaankuguoglu/836764857b7eec5ef7a0e4e51a5c33f7 to your computer and use it in GitHub Desktop.
Save bkaankuguoglu/836764857b7eec5ef7a0e4e51a5c33f7 to your computer and use it in GitHub Desktop.
import torch.optim as optim
input_dim = len(X_train.columns)
output_dim = 1
hidden_dim = 64
layer_dim = 3
batch_size = 64
dropout = 0.2
n_epochs = 100
learning_rate = 1e-3
weight_decay = 1e-6
model_params = {'input_dim': input_dim,
'hidden_dim' : hidden_dim,
'layer_dim' : layer_dim,
'output_dim' : output_dim,
'dropout_prob' : dropout}
model = get_model('lstm', model_params)
loss_fn = nn.MSELoss(reduction="mean")
optimizer = optim.Adam(model.parameters(), lr=learning_rate, weight_decay=weight_decay)
opt = Optimization(model=model, loss_fn=loss_fn, optimizer=optimizer)
opt.train(train_loader, val_loader, batch_size=batch_size, n_epochs=n_epochs, n_features=input_dim)
opt.plot_losses()
predictions, values = opt.evaluate(test_loader_one, batch_size=1, n_features=input_dim)
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment