Last active
February 14, 2019 17:44
-
-
Save bkj/2c4ae03439935e52ad3dca6478a005d4 to your computer and use it in GitHub Desktop.
formulas for BCE loss in pytorch
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import pandas as pd | |
import torch.nn.functional as F | |
def sparse_bce_with_logits(x, i, j): | |
t1 = x.clamp(min=0).mean() | |
t2 = - x[(i, j)].sum() / x.numel() | |
t3 = torch.log(1 + torch.exp(-torch.abs(x))).mean() | |
return t1 + t2 + t3 | |
loss = torch.nn.BCEWithLogitsLoss() | |
sloss = torch.nn.BCELoss() | |
all_res = [] | |
for scale in np.arange(0, 100, 2): | |
x = torch.randn((100, 10)) * scale | |
sx = torch.sigmoid(x) | |
y = (torch.rand((100, 10)) < 0.1).float() | |
i, j = np.where(y.numpy()) | |
i, j = torch.LongTensor(i), torch.LongTensor(j) | |
bce_logits = loss(x, y) | |
bce_sigmoid = sloss(sx, y) | |
bce_sigmoid_manual = - (y * sx.log() + (1 - y) * (1 - sx).log()).mean() | |
bce_logit_manual = (x.clamp(min=0) - x * y + torch.log(1 + torch.exp(-torch.abs(x)))).mean() | |
bce_logit_sparse = sparse_bce_with_logits(x, i, j) | |
res = { | |
"sigmoid" : (bce_logits - bce_sigmoid).item(), | |
"sigmoid_manual" : (bce_logits - bce_sigmoid_manual).item(), | |
"logit_manual" : (bce_logits - bce_logit_manual).item(), | |
"logit_sparse" : (bce_logits - bce_logit_sparse).item(), | |
} | |
all_res.append(res) | |
pd.DataFrame(all_res) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment