Last active
February 16, 2019 22:38
-
-
Save bkj/70c1dbd4be744797a4ab2ccb36a08337 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#!/usr/bin/env python | |
""" | |
bohb.py | |
""" | |
import numpy as np | |
from uuid import uuid4 | |
import ConfigSpace as CS | |
from hpbandster.optimizers.config_generators.bohb import BOHB as CG_BOHB | |
from rsub import * | |
from matplotlib import pyplot as plt | |
np.random.seed(123) | |
# -- | |
# Helpers | |
class FiniteIterable: | |
""" I'm sure there's some way to do this with itertools """ | |
def __init__(self, x, max_steps): | |
self.x = x | |
self.max_steps = max_steps | |
self.counter = 0 | |
def __next__(self): | |
if self.counter >= self.max_steps: | |
raise StopIteration | |
else: | |
self.counter += 1 | |
return next(self.x) | |
def __iter__(self): | |
return self | |
# -- | |
# Sampler | |
class _Job: | |
def __init__(self, id, kwargs, result): | |
self.id = id | |
self.kwargs = kwargs | |
self.result = result | |
self.exception = None | |
self.timestamps = -1 | |
class Sampler: | |
""" Wrapper around CG_BOHB """ | |
def __init__(self, configspace): | |
self.results = [] | |
self._config_generator = CG_BOHB( | |
configspace = configspace, | |
min_points_in_model = None, | |
top_n_percent = 15, | |
num_samples = 64, | |
random_fraction = 1 / 3, | |
bandwidth_factor = 3, | |
min_bandwidth = 1e-3, | |
) | |
def __next__(self): | |
config, config_info = self._config_generator.get_config(budget=-1) | |
return Task(config=config, config_info=config_info) | |
def update(self, task): | |
self._config_generator.new_result( | |
_Job( | |
id=task.id, | |
kwargs={ | |
"budget" : task.budget, | |
"config" : task.config | |
}, | |
result={ | |
"loss" : task.score | |
} | |
) | |
) | |
# -- | |
# Task | |
# The thing you're trying to optimize. | |
# In practice, this would be a wrapper around an NN. | |
class Task: | |
def __init__(self, config, config_info, seed=None): | |
self.id = str(uuid4()) | |
self.config = config | |
self.score = None | |
self.budget = None | |
self.rng = np.random.RandomState(seed) if seed is not None else np.random | |
self.config = config | |
self.config_info = config_info | |
def train(self, budget): | |
x = self.config['x'] | |
self.budget = budget | |
self.score = np.clip(x + self.rng.randn() / budget, 0.5 * x, 1.5 * x) | |
@property | |
def summary(self): | |
return { | |
"id" : self.id, | |
"budget" : self.budget, | |
"score" : self.score, | |
"config" : self.config, | |
"config_info" : self.config_info, | |
} | |
# -- | |
# SHScheduler | |
# Given a sampler, runs successive halving | |
class SHScheduler: | |
def __init__(self, eta=3, min_budget=1, max_budget=81): | |
self.eta = eta | |
self.min_budget = min_budget | |
self.max_budget = max_budget | |
self.history = [] | |
self.num_brackets = -int(np.log(min_budget/max_budget)/np.log(eta)) + 1 | |
self.budgets = max_budget * np.power(eta, -np.linspace(self.num_brackets-1, 0, self.num_brackets)) | |
def get_pop_sizes(self, bracket_idx): | |
s = self.num_brackets - 1 - (bracket_idx % self.num_brackets) | |
n0 = int(np.floor(self.num_brackets / (s + 1)) * self.eta ** s) | |
ns = [max(int(n0 * (self.eta ** (-i))), 1) for i in range(s + 1)] | |
return ns | |
def get_budgets(self, bracket_idx): | |
s = self.num_brackets - 1 - (bracket_idx % self.num_brackets) | |
return list(self.budgets[(-s-1):]) | |
def cull(self, population, k): | |
return sorted(list(population), key=lambda x: x.score)[:k] | |
def run_stage(self, population, budget, callback=None): | |
for p in population: | |
p.train(budget) | |
if callback is not None: | |
callback(p) | |
self.history.append(p.summary) | |
yield p | |
def run_bracket(self, sampler, bracket_idx): | |
budgets = self.get_budgets(bracket_idx) | |
pop_sizes = self.get_pop_sizes(bracket_idx) | |
for stage in range(len(budgets)): | |
if stage == 0: | |
# In the first stage, we're using the sampler | |
# After each evaluation, we update the sampler's model | |
population = FiniteIterable(sampler, pop_sizes[stage]) | |
population = self.run_stage(population, budget=budgets[stage], callback=sampler.update) | |
else: | |
# In later stages, don't use the sampler, but we still update the model | |
population = self.cull(population, k=pop_sizes[stage]) | |
population = self.run_stage(population, budget=budgets[stage], callback=sampler.update) | |
population = list(population) | |
print('bracket_idx=%d | stage=%d | population=%d | budget=%d' % (bracket_idx, stage, len(population), budgets[stage])) | |
def run_hyperband(scheduler, sampler): | |
for bracket_idx in range(scheduler.num_brackets): | |
scheduler.run_bracket(sampler, bracket_idx=bracket_idx) | |
return scheduler | |
config_space = CS.ConfigurationSpace() | |
config_space.seed(123) | |
config_space.add_hyperparameter(CS.UniformFloatHyperparameter('x', lower=0, upper=1)) | |
sampler = Sampler(config_space) | |
scheduler = SHScheduler() | |
scheduler = run_hyperband(scheduler, sampler) | |
_ = plt.plot([h['score'] for h in scheduler.history if h['config_info']['model_based_pick']]) | |
_ = plt.plot([h['score'] for h in scheduler.history if not h['config_info']['model_based_pick']]) | |
_ = plt.yscale('log') | |
show_plot() | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment