Last active
March 5, 2019 19:11
-
-
Save bkj/b1ce94d3fe151d523d9a075f891ccbf1 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#!/usr/bin/env python | |
""" | |
faiss_svc.py | |
""" | |
import faiss | |
import numpy as np | |
from time import time | |
from sklearn.svm import LinearSVC | |
class FaissLinearSVC: | |
def __init__(self, model): | |
self.coef_ = np.ascontiguousarray(model.coef_.astype(np.float32)) | |
self.intercept_ = model.intercept_[0] | |
def decision_function(self, findex, k): | |
scores, idx = findex.search(self.coef_, k=k) | |
return scores.squeeze() + self.intercept_, idx.squeeze() | |
n_obs = 800000 | |
dim = 128 | |
n_model = 100 | |
k = 32 | |
x = np.random.uniform(0, 1, (n_obs, dim)) | |
x = np.ascontiguousarray(x).astype(np.float32) | |
model = LinearSVC(fit_intercept=True).fit(x[:n_model], np.random.choice((0, 1), n_model)) | |
fmodel = FaissLinearSVC(model) | |
findex = faiss.IndexFlatIP(x.shape[1]) | |
findex.add(x) | |
t = time() | |
top_faiss_scores, top_faiss_idx = fmodel.decision_function(findex, k) | |
top_faiss_scores, top_faiss_idx | |
faiss_time = time() - t | |
t = time() | |
svc_scores = model.decision_function(x) | |
top_svc_idx = np.argsort(-svc_scores)[:k] | |
top_svc_scores = svc_scores[top_svc_idx] | |
top_svc_scores, top_svc_idx | |
svc_time = time() - t | |
print('faiss_time=%f | svc_time=%f' % (faiss_time, svc_time)) | |
assert (top_faiss_idx == top_svc_idx).all() | |
assert np.allclose(top_faiss_scores, top_svc_scores) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment