Created
August 20, 2014 14:58
-
-
Save blahah/1352b0af9c547a417738 to your computer and use it in GitHub Desktop.
Basic plotting of transrate results for varying read depth Trinity mouse assemblies
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Transrate assembly and contig plots. | |
======================================================== | |
Assemblies of mouse with 10, 20, 50 and 100 million reads. | |
# Assembly-level stats | |
## Load data | |
```{r} | |
setwd('~/Dropbox/ongoing_projects/feeding_transcriptome/final') | |
astats <- read.csv('all_10M_assemblies.csv') | |
astats$num_pairs <- 10e6 | |
astats$percent_mapping <- with(astats, total_mappings / num_pairs * 100) | |
astats$pc_good_mapping <- with(astats, good_mappings / num_pairs * 100) | |
astats$assembly <- gsub(astats$assembly, pattern="\\.corr\\.Trinity\\.fasta", replacement="") | |
library(reshape2) | |
astats <- melt(astats, id='assembly') | |
astats <- astats[complete.cases(astats),] | |
astats$assembly <- factor(x=astats$assembly, levels=c("10M", "20M", "50M", "100M"), ordered=T) | |
``` | |
## Plot the metrics | |
```{r fig.width=7, fig.height=40} | |
library(ggplot2) | |
ggplot(astats, aes(x=assembly, y=value, fill=assembly)) + | |
geom_bar(position='dodge', stat='identity') + | |
facet_grid(variable ~ ., scales="free") + | |
theme(strip.text.y = element_text(angle=0)) | |
``` | |
# Contig-level stats | |
## Load data | |
```{r} | |
library(reshape2) | |
setwd('~/Dropbox/ongoing_projects/feeding_transcriptome/final') | |
cstats <- read.csv('all_10M_10M.corr.Trinity.fasta_contigs.csv') | |
cstats$millionreads <- 10 | |
cstats20 <- read.csv('all_10M_20M.corr.Trinity.fasta_contigs.csv') | |
cstats20$millionreads <- 20 | |
cstats <- rbind(cstats, cstats20) | |
cstats50 <- read.csv('all_10M_50M.corr.Trinity.fasta_contigs.csv') | |
cstats50$millionreads <- 50 | |
cstats <- rbind(cstats, cstats50) | |
cstats100 <- read.csv('all_10M_100M.corr.Trinity.fasta_contigs.csv') | |
cstats100$millionreads <- 100 | |
cstats <- rbind(cstats, cstats100) | |
``` | |
Plot the metrics | |
## Contig stats | |
### Length | |
```{r fig.width=12, fig.height=8} | |
library(ggplot2) | |
ggplot(cstats, aes(x=length, colour=factor(millionreads))) + | |
geom_density() + | |
labs(colour='Reads (x10^6)') | |
``` | |
### GC | |
```{r fig.width=12, fig.height=8} | |
ggplot(cstats, aes(x=prop_gc, colour=factor(millionreads))) + | |
geom_density() + | |
labs(colour='Reads (x10^6)') | |
``` | |
### GC skew | |
```{r fig.width=12, fig.height=8} | |
ggplot(cstats, aes(x=gc_skew, colour=factor(millionreads))) + | |
geom_density() + | |
labs(colour='Reads (x10^6)') | |
``` | |
### AT skew | |
```{r fig.width=12, fig.height=8} | |
ggplot(cstats, aes(x=at_skew, colour=factor(millionreads))) + | |
geom_density() + | |
labs(colour='Reads (x10^6)') | |
``` | |
### CpG count | |
```{r fig.width=12, fig.height=8} | |
ggplot(cstats, aes(x=cpg_count, colour=factor(millionreads))) + | |
geom_density() + | |
labs(colour='Reads (x10^6)') | |
``` | |
### Cpg ratio | |
```{r fig.width=12, fig.height=8} | |
ggplot(cstats, aes(x=cpg_ratio, colour=factor(millionreads))) + | |
geom_density() + | |
labs(colour='Reads (x10^6)') | |
``` | |
### Orf length | |
```{r fig.width=12, fig.height=8} | |
ggplot(cstats, aes(x=orf_length, colour=factor(millionreads))) + | |
geom_density() + | |
labs(colour='Reads (x10^6)') + scale_x_log10() | |
``` | |
### Linguistic complexity (k=6) | |
```{r fig.width=12, fig.height=8} | |
ggplot(cstats, aes(x=linguistic_complexity_6, colour=factor(millionreads))) + | |
geom_density() + | |
labs(colour='Reads (x10^6)') | |
``` | |
## Read metrics | |
### Uncovered bases | |
```{r fig.width=12, fig.height=8} | |
ggplot(cstats, aes(x=uncovered_bases, colour=factor(millionreads))) + | |
geom_density() + | |
labs(colour='Reads (x10^6)') + scale_x_log10() | |
``` | |
### Mean coverage | |
```{r fig.width=12, fig.height=8} | |
ggplot(cstats, aes(x=mean_coverage, colour=factor(millionreads))) + | |
geom_density() + | |
labs(colour='Reads (x10^6)') + scale_x_log10() | |
ggplot(cstats, aes(y=mean_coverage, x=factor(millionreads))) + | |
geom_violin() + | |
labs(colour='Reads (x10^6)') + scale_y_log10() | |
``` | |
### In bridges | |
```{r fig.width=12, fig.height=8} | |
ggplot(cstats, aes(x=in_bridges, colour=factor(millionreads))) + | |
geom_density() + | |
labs(colour='Reads (x10^6)') + scale_x_log10() | |
``` | |
### In bridges | |
```{r fig.width=12, fig.height=8} | |
ggplot(cstats, aes(x=in_bridges, colour=factor(millionreads))) + | |
geom_density() + | |
labs(colour='Reads (x10^6)') + scale_x_log10() | |
``` | |
### Edit distance per base | |
```{r fig.width=12, fig.height=8} | |
ggplot(cstats, aes(x=edit_distance_per_base, colour=factor(millionreads))) + | |
geom_density() + | |
labs(colour='Reads (x10^6)') | |
``` | |
### Low uniqueness bases | |
```{r fig.width=12, fig.height=8} | |
ggplot(cstats, aes(x=low_uniqueness_bases, colour=factor(millionreads))) + | |
geom_density() + | |
labs(colour='Reads (x10^6)') + scale_x_log10() | |
``` | |
### Low uniqueness bases (proportion) | |
```{r fig.width=12, fig.height=8} | |
ggplot(cstats, aes(x=p_low_uniqueness_bases, colour=factor(millionreads))) + | |
geom_density() + | |
labs(colour='Reads (x10^6)') | |
``` | |
## Reference-based metrics | |
### Reference coverage | |
```{r fig.width=12, fig.height=8} | |
ggplot(cstats, aes(x=reference_coverage, colour=factor(millionreads))) + | |
geom_density() + | |
labs(colour='Reads (x10^6)') | |
``` |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment