Created
July 27, 2020 20:28
-
-
Save blaylockbk/5708a81b0669985ca15878c7574ac390 to your computer and use it in GitHub Desktop.
I often have xarray datasets with latitude and longitude coordinates (not as xarray dimensions). When I need to pluck values from a point nearest to a specific lat/lon coordinate (like a weather station), this is what I use...
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
import xarray as xr | |
def to_180(lon): | |
""" | |
Wrap longitude from degrees [0, 360] to degrees [-180, 180]. | |
An alternative method is | |
lon[lon>180] -= 360 | |
Parameters | |
---------- | |
lon : array_like | |
Longitude values | |
""" | |
lon = np.array(lon) | |
lon = (lon + 180) % 360 - 180 | |
return lon | |
def nearest_latlon_index(ds, points, return_value=True, verbose=False): | |
""" | |
Find the index for a point nearest a given latitude and longitude. | |
See GitHub notebook for a demo | |
https://github.com/blaylockbk/pyBKB_v3/blob/master/demo/Nearest_lat-lon_Grid.ipynb | |
Parameters | |
---------- | |
ds : xarray.Dataset | |
The Dataset should include coordinates for both 'latitude' and | |
'longitude'. | |
points : tuple or list of tuples | |
The latitude and longitude (lat, lon) tuple for the point you | |
want to pluck from the Grid. Multple tuples may be given as a | |
list to return the values from multiple points. | |
return_value : bool | |
If True, return the value of the Dataset at the indexes. | |
If False, return just the index values. | |
Returns | |
------- | |
The x and y index for the grid point nearest the point's latitude | |
and longitude. The great-circle distance between each point pair is | |
given as a Dataset attribute in kilometers. | |
""" | |
if 'lat' in ds: | |
ds = ds.rename(dict(lat='latitude', lon='longitude')) | |
if isinstance(points, tuple): | |
# If a tuple is give, turn into a one-item list. | |
points = [points] | |
xs = [] # x index values | |
ys = [] # y index values | |
distances = [] # distance between the pair of points | |
for point in points: | |
assert len(point) == 2, "``points`` should be a tuple or list of tuples (lat, lon)" | |
p_lat, p_lon = point | |
# Force longitude values to range from -180 to 180 degrees. | |
p_lon = to_180(p_lon) | |
ds['longitude'][:] = to_180(ds.longitude) | |
# Find absolute difference between requested point and the grid coordinates. | |
abslat = np.abs(ds.latitude - p_lat) | |
abslon = np.abs(ds.longitude - p_lon) | |
# Create grid of the maximum values of the two absolute grids | |
c = np.maximum(abslon, abslat) | |
# Find location where lat/lon minimum absolute value intersects | |
y, x = np.where(c == np.min(c)) | |
xs.append(x[0]) | |
ys.append(y[0]) | |
# Matched Grid lat/lon | |
g_lat = ds.latitude.isel(x=x, y=y).data[0][0] | |
g_lon = ds.longitude.isel(x=x, y=y).data[0][0] | |
# Calculate Great Circle distance between requeted point and | |
# matched grid point. | |
# Based on https://andrew.hedges.name/experiments/haversine/ | |
# approximate radius of earth in km | |
R = 6373.0 | |
lat1 = np.deg2rad(p_lat) | |
lon1 = np.deg2rad(p_lon) | |
lat2 = np.deg2rad(g_lat) | |
lon2 = np.deg2rad(g_lon) | |
dlon = lon2 - lon1 | |
dlat = lat2 - lat1 | |
a = np.sin(dlat / 2)**2 + np.cos(lat1) * np.cos(lat2) * np.sin(dlon / 2)**2 | |
c = 2 * np.arctan2(np.sqrt(a), np.sqrt(1 - a)) | |
distance = R * c | |
distances.append(distance) | |
if verbose: | |
print(f"🔎 Matched requested point ({p_lat:.3f}, {p_lon:.3f}) to grid point ({g_lat:.3f}, {g_lon:.3f})...distance of {distance:.2f} km.") | |
if return_value: | |
ds = ds.isel(x=xs, y=ys) | |
ds.attrs['point x,y index'] = list(zip(xs, ys)) | |
ds.attrs['distances (in km)'] = distances | |
return ds | |
else: | |
return list(zip(xs, ys)) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment