Created
August 9, 2021 16:02
-
-
Save blewert/4e1858774836448effaafa7bb63366bf to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
t_test_pneg = 0 | |
t_test_pneu = 0 | |
t_test_nneu = 0 | |
ans = | |
0.4820 0.5271 0.5012 | |
t_test_polarity_pneg = 0.9589 | |
t_test_polarity_pneu = 0 | |
t_test_polarity_nneu = 0 | |
ans = | |
0.082398 0.082379 0.835217 |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
clear all | |
clc | |
close all | |
sentiment = csvread('covid-sentiment.csv'); | |
data = sentiment'; | |
compound = data(1, :, :, :); | |
compound = compound'; | |
# positive ranked tweets | |
alpha = 0.05; | |
positive = compound > alpha; | |
num_positive = sum(positive); | |
# negative ranked tweets | |
negative = compound < -alpha; | |
num_negative = sum(negative); | |
# neutral | |
neutral = (compound <= alpha) & (compound >= -alpha); | |
num_neutral = sum(neutral); | |
function output = ilerp(a, b, t) | |
output = (t - a) / (b - a); | |
end | |
# get data | |
positive_vals = compound(positive); | |
negative_vals = abs(compound(negative)); | |
neutral_vals = compound(neutral); | |
normalised_pos = ilerp(0.05, 1, positive_vals); | |
normalised_neg = ilerp(0.05, 1, negative_vals); | |
normalised_neu = ilerp(-0.05, 0.05, neutral_vals); | |
# get avgs | |
positive_avg = mean(positive_vals); | |
negative_avg = mean(negative_vals); | |
neutral_avg = mean(neutral_vals); | |
# t-test | |
# [h, t_test_pneg] = ttest2(positive_vals, negative_vals, 'Vartype','unequal') | |
# [h, t_test_pneu] = ttest2(positive_vals, neutral_vals, 'Vartype','unequal') | |
# [h, t_test_nneu] = ttest2(negative_vals, neutral_vals, 'Vartype','unequal') | |
[~, t_test_pneg] = ttest2(normalised_pos, normalised_neg, 'Vartype','unequal') | |
[~, t_test_pneu] = ttest2(normalised_pos, normalised_neu, 'Vartype','unequal') | |
[~, t_test_nneu] = ttest2(normalised_neg, normalised_neu, 'Vartype','unequal') | |
[mean(normalised_pos), mean(normalised_neg), mean(normalised_neu)] | |
negative_sentiment = sentiment(:, 2); | |
neutral_sentiment = sentiment(:, 3); | |
positive_sentiment = sentiment(:, 4); | |
[~, t_test_polarity_pneg] = ttest2(positive_sentiment, negative_sentiment) | |
[~, t_test_polarity_pneu] = ttest2(positive_sentiment, neutral_sentiment) | |
[~, t_test_polarity_nneu] = ttest2(negative_sentiment, neutral_sentiment) | |
[mean(positive_sentiment), mean(negative_sentiment), mean(neutral_sentiment)] | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment