Created
May 18, 2021 09:39
-
-
Save blu3r4y/d536ec45623b8d7a184d3239986d7291 to your computer and use it in GitHub Desktop.
Network flow visualization used by Dynatrace - SAL - LIT.AI.JKU in the NAD 2021 challenge
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# Copyright 2021 | |
# Dynatrace Research | |
# SAL Silicon Austria Labs | |
# LIT Artificial Intelligence Lab | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
from typing import List, Dict | |
import pandas as pd | |
import datashader as ds | |
import holoviews as hv | |
import holoviews.operation.datashader as hd | |
from IPython.core.display import display, HTML | |
hv.extension("bokeh") | |
def _get_data_matrix(df: pd.DataFrame, groups: List[str]) -> pd.DataFrame: | |
# merge those group columns into a group label and get the group x time grouping | |
df["group"] = df.groupby(groups).ngroup() | |
mat = df.groupby(["group", "time"])["label"].agg(["count", "median"]).astype(int) | |
# sort by group size and re-index groups | |
num_groups = mat.index.get_level_values(0).nunique() | |
# add the broadcasted group size to the "group" level | |
sizes = df.groupby("group").size() | |
_, sizes = mat.align(sizes, level=0, axis=0) | |
mat["size"] = sizes | |
# sort by the group size, then by group ids | |
mat = mat.reset_index().sort_values(by=["size", "group"]) | |
# modify the group ids so that they are ascending again | |
mapping = dict(zip(mat["group"].unique(), range(num_groups))) | |
mat["group"] = mat["group"].map(mapping) | |
return mat | |
def shade_network_flow(df: pd.DataFrame, groups: List[str], colors: Dict[int, str], legend: bool = True): | |
if legend: | |
html = "<br/>".join([ | |
f"<span style=\"background-color:black;color:{val};font-weight:bold;\">" + | |
f"{key} : {val}" + | |
f"</span>" | |
for key, val in colors.items() | |
]) | |
display(HTML(html)) | |
matrix = _get_data_matrix(df, groups) | |
points = hv.Points(matrix, ["group", "time"]) | |
shaded = hd.datashade(points, aggregator=ds.count_cat("median"), color_key=colors) | |
render = hd.dynspread(shaded, threshold=0.5, max_px=4).opts( | |
bgcolor="black", xaxis=None, yaxis=None, width=1200, height=600) | |
return render |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
ipython | |
bokeh>=2 | |
numpy>=1.19 | |
pandas>=1.2 | |
holoviews>=1.14 | |
datashader>=0.12 |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment