Last active
January 14, 2023 02:12
-
-
Save bmabir17/990762d11cd587c05ddfa211d07829b6 to your computer and use it in GitHub Desktop.
Resnet Variational autoencoder for image reconstruction
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import torch | |
from torch import nn | |
import torch.nn.functional as F | |
import abc | |
import pytorch_ssim | |
import torchvision.models as models | |
from torch.autograd import Variable | |
class AbstractAutoEncoder(nn.Module): | |
__metaclass__ = abc.ABCMeta | |
@abc.abstractmethod | |
def encode(self, x): | |
return | |
@abc.abstractmethod | |
def decode(self, z): | |
return | |
@abc.abstractmethod | |
def forward(self, x, latent_vec=False): | |
"""model return (reconstructed_x, *)""" | |
return | |
@abc.abstractmethod | |
def loss_function(self, **kwargs): | |
"""accepts (original images, *) where * is the same as returned from forward()""" | |
return | |
@abc.abstractmethod | |
def latest_losses(self): | |
"""returns the latest losses in a dictionary. Useful for logging.""" | |
return | |
class ResNet_VAE(AbstractAutoEncoder): | |
def __init__( | |
self,recon_loss_type, fc_hidden1=1024, | |
fc_hidden2=768, drop_p=0.3, CNN_embed_dim=256): | |
super(ResNet_VAE, self).__init__() | |
self.recon_loss_type = recon_loss_type | |
self.fc_hidden1, self.fc_hidden2, self.CNN_embed_dim = fc_hidden1, fc_hidden2, CNN_embed_dim | |
# CNN architechtures | |
self.ch1, self.ch2, self.ch3, self.ch4 = 16, 32, 64, 128 | |
self.k1, self.k2, self.k3, self.k4 = (5, 5), (3, 3), (3, 3), (3, 3) # 2d kernal size | |
self.s1, self.s2, self.s3, self.s4 = (2, 2), (2, 2), (2, 2), (2, 2) # 2d strides | |
self.pd1, self.pd2, self.pd3, self.pd4 = (0, 0), (0, 0), (0, 0), (0, 0) # 2d padding | |
# encoding components | |
resnet = models.resnet18(pretrained=True) | |
modules = list(resnet.children())[:-1] # delete the last fc layer. | |
self.resnet = nn.Sequential(*modules) | |
self.fc1 = nn.Linear(resnet.fc.in_features, self.fc_hidden1) | |
self.bn1 = nn.BatchNorm1d(self.fc_hidden1, momentum=0.01) | |
self.fc2 = nn.Linear(self.fc_hidden1, self.fc_hidden2) | |
self.bn2 = nn.BatchNorm1d(self.fc_hidden2, momentum=0.01) | |
# Latent vectors mu and sigma | |
self.fc3_mu = nn.Linear(self.fc_hidden2, self.CNN_embed_dim) # output = CNN embedding latent variables | |
self.fc3_logvar = nn.Linear(self.fc_hidden2, self.CNN_embed_dim) # output = CNN embedding latent variables | |
# Sampling vector | |
self.fc4 = nn.Linear(self.CNN_embed_dim, self.fc_hidden2) | |
self.fc_bn4 = nn.BatchNorm1d(self.fc_hidden2) | |
self.fc5 = nn.Linear(self.fc_hidden2, 64 * 4 * 4) | |
self.fc_bn5 = nn.BatchNorm1d(64 * 4 * 4) | |
self.relu = nn.ReLU(inplace=True) | |
# Decoder | |
self.convTrans9 = nn.Sequential( | |
nn.ConvTranspose2d(in_channels=1024, out_channels=512, kernel_size=self.k4, stride=self.s4, | |
padding=self.pd4), | |
nn.BatchNorm2d(512, momentum=0.01), | |
nn.ReLU(inplace=True), | |
) | |
self.convTrans10 = nn.Sequential( | |
nn.ConvTranspose2d(in_channels=512, out_channels=256, kernel_size=self.k4, stride=self.s4, | |
padding=self.pd4), | |
nn.BatchNorm2d(256, momentum=0.01), | |
nn.ReLU(inplace=True), | |
) | |
self.convTrans11 = nn.Sequential( | |
nn.ConvTranspose2d(in_channels=256, out_channels=128, kernel_size=self.k3, stride=self.s3, | |
padding=self.pd3), | |
nn.BatchNorm2d(128, momentum=0.01), | |
nn.ReLU(inplace=True), | |
) | |
self.convTrans12 = nn.Sequential( | |
nn.ConvTranspose2d(in_channels=128, out_channels=64, kernel_size=self.k4, stride=self.s4, | |
padding=self.pd4), | |
nn.BatchNorm2d(64, momentum=0.01), | |
nn.ReLU(inplace=True), | |
) | |
self.convTrans6 = nn.Sequential( | |
nn.ConvTranspose2d(in_channels=64, out_channels=32, kernel_size=self.k4, stride=self.s4, | |
padding=self.pd4), | |
nn.BatchNorm2d(32, momentum=0.01), | |
nn.ReLU(inplace=True), | |
) | |
self.convTrans7 = nn.Sequential( | |
nn.ConvTranspose2d(in_channels=32, out_channels=8, kernel_size=self.k3, stride=self.s3, | |
padding=self.pd3), | |
nn.BatchNorm2d(8, momentum=0.01), | |
nn.ReLU(inplace=True), | |
) | |
self.convTrans8 = nn.Sequential( | |
nn.ConvTranspose2d(in_channels=8, out_channels=3, kernel_size=self.k2, stride=self.s2, | |
padding=self.pd2), | |
nn.BatchNorm2d(3, momentum=0.01), | |
nn.Sigmoid() # y = (y1, y2, y3) \in [0 ,1]^3 | |
) | |
def encode(self, x): | |
x = self.resnet(x) # ResNet | |
x = x.view(x.size(0), -1) # flatten output of conv | |
# FC layers | |
x = self.bn1(self.fc1(x)) | |
x = self.relu(x) | |
x = self.bn2(self.fc2(x)) | |
x = self.relu(x) | |
# x = F.dropout(x, p=self.drop_p, training=self.training) | |
mu, logvar = self.fc3_mu(x), self.fc3_logvar(x) | |
return mu, logvar | |
def reparameterize(self, mu, logvar): | |
std = torch.exp(logvar/2) | |
eps = torch.randn_like(std) | |
return mu + eps * std | |
def decode(self, z): | |
x = self.fc_bn4(self.fc4(z)) | |
x = self.relu(x) | |
x = self.fc_bn5(self.fc5(x)) | |
x = self.relu(x).view(-1, 1024, 1, 1) | |
x = self.convTrans9(x) | |
x = self.convTrans10(x) | |
x = self.convTrans11(x) | |
x = self.convTrans12(x) | |
x = self.convTrans6(x) | |
x = self.convTrans7(x) | |
x = self.convTrans8(x) | |
x = F.interpolate(x, size=(224, 224), mode='bilinear') | |
return x | |
def forward(self, x,latent_vec=False): | |
mu, logvar = self.encode(x) | |
z = self.reparameterize(mu, logvar) | |
x_reconst = self.decode(z) | |
if latent_vec: | |
return x_reconst, mu, logvar, z | |
else: | |
return x_reconst, mu, logvar | |
def loss_function(self, x, x_hat, mu, logvar): | |
recon_loss = calc_reconstruction_loss(x, x_hat, self.recon_loss_type) | |
kl_loss = -0.5 * torch.mean(1 + logvar - mu**2 - logvar.exp()) | |
return kl_loss + recon_loss | |
class ResNet_CVAE(AbstractAutoEncoder): | |
def __init__( | |
self,recon_loss_type, fc_hidden1=1024, | |
fc_hidden2=768, drop_p=0.3, CNN_embed_dim=256): | |
super(ResNet_VAE, self).__init__() | |
self.recon_loss_type = recon_loss_type | |
self.fc_hidden1, self.fc_hidden2, self.CNN_embed_dim = fc_hidden1, fc_hidden2, CNN_embed_dim | |
# CNN architechtures | |
self.ch1, self.ch2, self.ch3, self.ch4 = 16, 32, 64, 128 | |
self.k1, self.k2, self.k3, self.k4 = (5, 5), (3, 3), (3, 3), (3, 3) # 2d kernal size | |
self.s1, self.s2, self.s3, self.s4 = (2, 2), (2, 2), (2, 2), (2, 2) # 2d strides | |
self.pd1, self.pd2, self.pd3, self.pd4 = (0, 0), (0, 0), (0, 0), (0, 0) # 2d padding | |
# encoding components | |
resnet = models.resnet18(pretrained=True) | |
modules = list(resnet.children())[:-2] # delete the last fc layer. | |
self.resnet = nn.Sequential(*modules) | |
self.conv1 = nn.Sequential( | |
nn.Conv2d(in_channels=512, out_channels=256, kernel_size=1, stride=1, | |
padding=self.pd4), | |
nn.BatchNorm2d(256, momentum=0.01), | |
nn.ReLU(inplace=True), | |
) | |
self.out_mu = nn.Conv2d(256, 256, kernel_size=1, stride=1) | |
self.out_logvar = nn.Conv2d(256, 256, kernel_size=1, stride=1) | |
# (256, 8, 8) -> (3, 256, 256) | |
self.decoder = nn.Sequential( | |
# (256, 8, 8) -> (256, 16, 16) | |
UpsamplingLayer(256, 256, activation="ReLU"), | |
# -> (128, 32, 32) | |
UpsamplingLayer(256, 128, activation="ReLU"), | |
# -> (64, 64, 64) | |
UpsamplingLayer(128, 64, activation="ReLU", type="upsample"), | |
# -> (32, 128, 128) | |
UpsamplingLayer(64, 32, activation="ReLU", bn=False), | |
# -> (3, 256, 256) | |
UpsamplingLayer(32, 3, activation="none", bn=False, type="upsample"), | |
# nn.Tanh() | |
nn.Hardtanh(-1.0, 1.0), | |
) | |
def encode(self, x): | |
x = self.resnet(x) # ResNet | |
x = self.conv1(x) | |
mu = self.out_mu(x) | |
logvar = self.out_logvar(x) | |
return mu, logvar | |
def reparameterize(self, mu, logvar): | |
std = torch.exp(logvar/2) | |
eps = torch.randn_like(std) | |
return mu + eps * std | |
def decode(self, z): | |
return self.decoder(z) | |
def forward(self, x,latent_vec=False): | |
mu, logvar = self.encode(x) | |
z = self.reparameterize(mu, logvar) | |
x_reconst = self.decode(z) | |
if latent_vec: | |
return x_reconst, mu, logvar, z | |
else: | |
return x_reconst, mu, logvar | |
def loss_function(self, x, x_hat, mu, logvar): | |
recon_loss = calc_reconstruction_loss(x, x_hat, self.recon_loss_type) | |
kl_loss = -0.5 * torch.mean(1 + logvar - mu**2 - logvar.exp()) | |
return kl_loss + recon_loss | |
class UpsamplingLayer(nn.Module): | |
def __init__(self, in_channel, out_channel, activation="none", bn=True, type="transpose"): | |
super(UpsamplingLayer, self).__init__() | |
self.bn = nn.BatchNorm2d(out_channel) if bn else None | |
if activation == "ReLU": | |
self.activaton = nn.ReLU(True) | |
elif activation == "none": | |
self.activaton = None | |
else: | |
assert() | |
if type == "transpose": | |
self.upsampler = nn.Sequential( | |
nn.ConvTranspose2d(in_channel, out_channel, kernel_size=2, stride=2, padding=0), | |
) | |
elif type == "upsample": | |
self.upsampler = nn.Sequential( | |
nn.UpsamplingBilinear2d(scale_factor=2), | |
nn.Conv2d(in_channel, out_channel, kernel_size=3, stride=1, padding=1), | |
) | |
else: | |
assert() | |
def forward(self, x): | |
x = self.upsampler(x) | |
if self.activaton: | |
x = self.activaton(x) | |
if self.bn: | |
x = self.bn(x) | |
return x | |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import torch | |
from torch import nn | |
from torch.nn import functional as F | |
import abc | |
import pytorch_ssim | |
# Copyright 2018 The Sonnet Authors. All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# ============================================================================ | |
# Borrowed from https://github.com/deepmind/sonnet and ported it to PyTorch | |
class AbstractAutoEncoder(nn.Module): | |
__metaclass__ = abc.ABCMeta | |
@abc.abstractmethod | |
def encode(self, x): | |
return | |
@abc.abstractmethod | |
def decode(self, z): | |
return | |
@abc.abstractmethod | |
def forward(self, x, latent_vec=False): | |
"""model return (reconstructed_x, *)""" | |
return | |
@abc.abstractmethod | |
def loss_function(self, **kwargs): | |
"""accepts (original images, *) where * is the same as returned from forward()""" | |
return | |
@abc.abstractmethod | |
def latest_losses(self): | |
"""returns the latest losses in a dictionary. Useful for logging.""" | |
return | |
class Quantize(nn.Module): | |
def __init__(self, dim, n_embed, decay=0.99, eps=1e-5): | |
super().__init__() | |
self.dim = dim | |
self.n_embed = n_embed | |
self.decay = decay | |
self.eps = eps | |
embed = torch.randn(dim, n_embed) | |
self.register_buffer('embed', embed) | |
self.register_buffer('cluster_size', torch.zeros(n_embed)) | |
self.register_buffer('embed_avg', embed.clone()) | |
def forward(self, input): | |
flatten = input.reshape(-1, self.dim) | |
dist = ( | |
flatten.pow(2).sum(1, keepdim=True) | |
- 2 * flatten @ self.embed | |
+ self.embed.pow(2).sum(0, keepdim=True) | |
) | |
_, embed_ind = (-dist).max(1) | |
embed_onehot = F.one_hot(embed_ind, self.n_embed).type(flatten.dtype) | |
embed_ind = embed_ind.view(*input.shape[:-1]) | |
quantize = self.embed_code(embed_ind) | |
if self.training: | |
self.cluster_size.data.mul_(self.decay).add_( | |
1 - self.decay, embed_onehot.sum(0) | |
) | |
embed_sum = flatten.transpose(0, 1) @ embed_onehot | |
self.embed_avg.data.mul_(self.decay).add_(1 - self.decay, embed_sum) | |
n = self.cluster_size.sum() | |
cluster_size = ( | |
(self.cluster_size + self.eps) / (n + self.n_embed * self.eps) * n | |
) | |
embed_normalized = self.embed_avg / cluster_size.unsqueeze(0) | |
self.embed.data.copy_(embed_normalized) | |
diff = (quantize.detach() - input).pow(2).mean() | |
quantize = input + (quantize - input).detach() | |
return quantize, diff, embed_ind | |
def embed_code(self, embed_id): | |
return F.embedding(embed_id, self.embed.transpose(0, 1)) | |
class ResBlock(nn.Module): | |
def __init__(self, in_channel, channel): | |
super().__init__() | |
self.conv = nn.Sequential( | |
nn.ReLU(inplace=True), | |
nn.Conv2d(in_channel, channel, 3, padding=1), | |
nn.ReLU(inplace=True), | |
nn.Conv2d(channel, in_channel, 1), | |
) | |
def forward(self, input): | |
out = self.conv(input) | |
out += input | |
return out | |
class Encoder(nn.Module): | |
def __init__(self, in_channel, channel, n_res_block, n_res_channel, stride): | |
super().__init__() | |
if stride == 4: | |
blocks = [ | |
nn.Conv2d(in_channel, channel // 2, 4, stride=2, padding=1), | |
nn.ReLU(inplace=True), | |
nn.Conv2d(channel // 2, channel, 4, stride=2, padding=1), | |
nn.ReLU(inplace=True), | |
nn.Conv2d(channel, channel, 3, padding=1), | |
] | |
elif stride == 2: | |
blocks = [ | |
nn.Conv2d(in_channel, channel // 2, 4, stride=2, padding=1), | |
nn.ReLU(inplace=True), | |
nn.Conv2d(channel // 2, channel, 3, padding=1), | |
] | |
for i in range(n_res_block): | |
blocks.append(ResBlock(channel, n_res_channel)) | |
blocks.append(nn.ReLU(inplace=True)) | |
self.blocks = nn.Sequential(*blocks) | |
def forward(self, input): | |
return self.blocks(input) | |
class Decoder(nn.Module): | |
def __init__( | |
self, in_channel, out_channel, channel, n_res_block, n_res_channel, stride | |
): | |
super().__init__() | |
blocks = [nn.Conv2d(in_channel, channel, 3, padding=1)] | |
for i in range(n_res_block): | |
blocks.append(ResBlock(channel, n_res_channel)) | |
blocks.append(nn.ReLU(inplace=True)) | |
if stride == 4: | |
blocks.extend( | |
[ | |
nn.ConvTranspose2d(channel, channel // 2, 4, stride=2, padding=1), | |
nn.ReLU(inplace=True), | |
nn.ConvTranspose2d( | |
channel // 2, out_channel, 4, stride=2, padding=1 | |
), | |
] | |
) | |
elif stride == 2: | |
blocks.append( | |
nn.ConvTranspose2d(channel, out_channel, 4, stride=2, padding=1) | |
) | |
self.blocks = nn.Sequential(*blocks) | |
def forward(self, input): | |
return self.blocks(input) | |
class VQVAE(AbstractAutoEncoder): | |
def __init__( | |
self, | |
recon_loss_type, | |
in_channel=3, | |
channel=128, | |
n_res_block=2, | |
n_res_channel=32, | |
embed_dim=64, | |
n_embed=512, | |
decay=0.99, | |
): | |
super().__init__() | |
self.recon_loss_type = recon_loss_type | |
self.enc_b = Encoder(in_channel, channel, n_res_block, n_res_channel, stride=4) | |
self.enc_t = Encoder(channel, channel, n_res_block, n_res_channel, stride=2) | |
self.quantize_conv_t = nn.Conv2d(channel, embed_dim, 1) | |
self.quantize_t = Quantize(embed_dim, n_embed) | |
self.dec_t = Decoder( | |
embed_dim, embed_dim, channel, n_res_block, n_res_channel, stride=2 | |
) | |
self.quantize_conv_b = nn.Conv2d(embed_dim + channel, embed_dim, 1) | |
self.quantize_b = Quantize(embed_dim, n_embed) | |
self.upsample_t = nn.ConvTranspose2d( | |
embed_dim, embed_dim, 4, stride=2, padding=1 | |
) | |
self.dec = Decoder( | |
embed_dim + embed_dim, | |
in_channel, | |
channel, | |
n_res_block, | |
n_res_channel, | |
stride=4, | |
) | |
def forward(self, input, latent_vec=False): | |
quant_t, quant_b, diff, _, _ = self.encode(input) | |
dec, quant = self.decode(quant_t, quant_b) | |
if latent_vec: | |
return dec, diff, quant | |
else: | |
return dec, diff | |
def encode(self, input): | |
enc_b = self.enc_b(input) | |
enc_t = self.enc_t(enc_b) | |
quant_t = self.quantize_conv_t(enc_t).permute(0, 2, 3, 1) | |
quant_t, diff_t, id_t = self.quantize_t(quant_t) | |
quant_t = quant_t.permute(0, 3, 1, 2) | |
diff_t = diff_t.unsqueeze(0) | |
dec_t = self.dec_t(quant_t) | |
enc_b = torch.cat([dec_t, enc_b], 1) | |
quant_b = self.quantize_conv_b(enc_b).permute(0, 2, 3, 1) | |
quant_b, diff_b, id_b = self.quantize_b(quant_b) | |
quant_b = quant_b.permute(0, 3, 1, 2) | |
diff_b = diff_b.unsqueeze(0) | |
return quant_t, quant_b, diff_t + diff_b, id_t, id_b | |
def decode(self, quant_t, quant_b): | |
upsample_t = self.upsample_t(quant_t) | |
quant = torch.cat([upsample_t, quant_b], 1) | |
dec = self.dec(quant) | |
return dec, quant | |
def decode_code(self, code_t, code_b): | |
quant_t = self.quantize_t.embed_code(code_t) | |
quant_t = quant_t.permute(0, 3, 1, 2) | |
quant_b = self.quantize_b.embed_code(code_b) | |
quant_b = quant_b.permute(0, 3, 1, 2) | |
dec = self.decode(quant_t, quant_b) | |
return dec | |
def loss_function(self, x, x_hat, diff, latent_loss_weight=0.25): | |
criterion = nn.MSELoss() | |
recon_loss = criterion(x_hat, x) | |
latent_loss = diff.mean() | |
loss = recon_loss + latent_loss_weight * latent_loss | |
return loss |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment