Skip to content

Instantly share code, notes, and snippets.

@bmcfee
Created December 25, 2019 16:56
Show Gist options
  • Save bmcfee/1cc9ec5c4da51d514a9962cd96f08e02 to your computer and use it in GitHub Desktop.
Save bmcfee/1cc9ec5c4da51d514a9962cd96f08e02 to your computer and use it in GitHub Desktop.
Aliasing animation plot
import numpy as np
import matplotlib
import matplotlib.pyplot as plt
from matplotlib import cycler
from matplotlib.animation import FuncAnimation
colors = [_['color'] for _ in list(matplotlib.rcParams['axes.prop_cycle'])]
## Animation of aliasing
frame_rate = 20
# full wave should stay on screen for 2 seconds
# full wave should take 2 seconds to wipe out
# one second between waves
# each wave = 7 seconds * 4 waves = 28 seconds of animation
anim_duration = 28
n_frames = anim_duration * frame_rate
sched_0 = np.zeros(n_frames) + 3
sched_0[0*frame_rate:2*frame_rate] = np.linspace(-2, 0, endpoint=False, num=2*frame_rate)
sched_0[2*frame_rate:4*frame_rate] = 0
sched_0[4*frame_rate:6*frame_rate] = np.linspace(0, 2, endpoint=False, num=2*frame_rate)
sched_1 = np.zeros(n_frames) + 3
sched_1[7*frame_rate:9*frame_rate] = np.linspace(-2, 0, endpoint=False, num=2*frame_rate)
sched_1[9*frame_rate:11*frame_rate] = 0
sched_1[11*frame_rate:13*frame_rate] = np.linspace(0, 2, endpoint=False, num=2*frame_rate)
sched_2 = np.zeros(n_frames) + 3
sched_2[14*frame_rate:16*frame_rate] = np.linspace(-2, 0, endpoint=False, num=2*frame_rate)
sched_2[16*frame_rate:18*frame_rate] = 0
sched_2[18*frame_rate:20*frame_rate] = np.linspace(0, 2, endpoint=False, num=2*frame_rate)
sched_3 = np.zeros(n_frames) + 3
sched_3[21*frame_rate:23*frame_rate] = np.linspace(-2, 0, endpoint=False, num=2*frame_rate)
sched_3[23*frame_rate:25*frame_rate] = 0
sched_3[25*frame_rate:27*frame_rate] = np.linspace(0, 2, endpoint=False, num=2*frame_rate)
# --- #
fig = plt.figure(figsize=(8, 6))
fs_real = 1000
fs = 5
duration = 2
f0 = 1
f1 = f0 + fs
f2 = f0 + 2 * fs
f3 = f0 - fs
# Plot the continuous time curves
t = np.linspace(0, duration, num=duration * fs_real, endpoint=False)
x0 = np.cos(2 * np.pi * f0 * t)
x1 = np.cos(2 * np.pi * f1 * t)
x2 = np.cos(2 * np.pi * f2 * t)
x3 = np.cos(2 * np.pi * f3 * t)
# Plot the samples
N = int(duration * fs)
xsamp = np.cos(2 * np.pi * f0 * np.arange(N) / fs)
tsamp = np.arange(N) / fs
ax = plt.gca()
p0 = plt.plot([], [], label=r'$f={}$ Hz'.format(f0), color=colors[0])[0]
p1 = plt.plot([], [], label=r'$f={}$ Hz'.format(f1), color=colors[2])[0]
p2 = plt.plot([], [], label=r'$f={}$ Hz'.format(f2), color=colors[3])[0]
p3 = plt.plot([], [], label=r'$f={}$ Hz'.format(f3), color=colors[4])[0]
plt.plot(tsamp, xsamp, linestyle='', marker='.', color=colors[1], label=r'$x[n]$', zorder=5)
plt.legend(ncol=2, loc='upper right', fontsize='large')
plt.title(r'Aliasing example at $f_s={}$ Hz'.format(fs))
plt.xlabel('Time $t$ [seconds]')
plt.ylim([-1.25, 1.25])
plt.xlim([0, 2.0])
plt.yticks(np.linspace(-1, 1, num=9))
def init():
return p0, p1, p2, p3
def animate(i):
time = i / float(frame_rate)
if time <= 7:
n = (t >= sched_0[i]) & (t <= sched_0[i] + 2)
p0.set_data(t[n], x0[n])
return (p0,)
elif time <= 14:
n = (t >= sched_1[i]) & (t <= sched_1[i] + 2)
p1.set_data(t[n], x1[n])
return (p1,)
elif time <= 21:
n = (t >= sched_2[i]) & (t <= sched_2[i] + 2)
p2.set_data(t[n], x2[n])
return (p2,)
else:
n = (t >= sched_3[i]) & (t <= sched_3[i] + 2)
p3.set_data(t[n], x3[n])
return (p3,)
animation = FuncAnimation(fig, animate,
init_func=init,
frames=n_frames,
interval=1000./frame_rate,
blit=True)
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment