Created
          December 4, 2016 23:02 
        
      - 
      
- 
        Save bmount/7cbc28fb1294ab0e4572db091b24af6a to your computer and use it in GitHub Desktop. 
    PVANet lite from: https://raw.githubusercontent.com/sanghoon/pva-faster-rcnn/master/models/pvanet/lite/original.pt
  
        
  
    
      This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
      Learn more about bidirectional Unicode characters
    
  
  
    
  | name: "PVANET-lite" | |
| # https://raw.githubusercontent.com/sanghoon/pva-faster-rcnn/master/models/pvanet/lite/original.pt | |
| ################################################################################ | |
| ## Input | |
| ################################################################################ | |
| layer { | |
| name: 'input-data' | |
| type: 'Python' | |
| top: 'data' | |
| top: 'im_info' | |
| top: 'gt_boxes' | |
| include { phase: TRAIN } | |
| python_param { | |
| module: 'roi_data_layer.layer' | |
| layer: 'RoIDataLayer' | |
| param_str: "'num_classes': 21" | |
| } | |
| } | |
| layer { | |
| name: "input-data" | |
| type: "DummyData" | |
| top: "data" | |
| top: "im_info" | |
| include { phase: TEST } | |
| dummy_data_param { | |
| shape { dim: 1 dim: 3 dim: 640 dim: 1056 } | |
| shape { dim: 1 dim: 4 } | |
| } | |
| } | |
| ################################################################################ | |
| ## Conv 1 | |
| ################################################################################ | |
| layer { | |
| name: "conv1" | |
| type: "Convolution" | |
| bottom: "data" | |
| top: "conv1" | |
| param { lr_mult: 0.1 decay_mult: 0.1 } | |
| param { lr_mult: 0.2 decay_mult: 0 } | |
| convolution_param { | |
| num_output: 32 | |
| kernel_size: 4 stride: 2 pad: 1 | |
| weight_filler { type: "xavier" std: 0.1 } | |
| bias_filler { type: "constant" value: 0.1 } | |
| } | |
| } | |
| layer { | |
| name: "conv1/bn" | |
| type: "BatchNorm" | |
| bottom: "conv1" | |
| top: "conv1" | |
| param { lr_mult: 0 decay_mult: 0 } | |
| param { lr_mult: 0 decay_mult: 0 } | |
| param { lr_mult: 0 decay_mult: 0 } | |
| batch_norm_param { use_global_stats: true } | |
| } | |
| layer { | |
| name: "conv1/scale" | |
| type: "Scale" | |
| bottom: "conv1" | |
| top: "conv1" | |
| param { lr_mult: 0.1 decay_mult: 0 } | |
| param { lr_mult: 0.1 decay_mult: 0 } | |
| scale_param { bias_term: true } | |
| } | |
| layer { | |
| name: "relu1" | |
| type: "ReLU" | |
| bottom: "conv1" | |
| top: "conv1" | |
| } | |
| ################################################################################ | |
| ## Conv 2 | |
| ################################################################################ | |
| layer { | |
| name: "conv2" | |
| type: "Convolution" | |
| bottom: "conv1" | |
| top: "conv2" | |
| param { lr_mult: 0.1 decay_mult: 0.1 } | |
| param { lr_mult: 0.2 decay_mult: 0 } | |
| convolution_param { | |
| num_output: 48 | |
| kernel_size: 3 stride: 2 pad: 1 | |
| weight_filler { type: "xavier" std: 0.1 } | |
| bias_filler { type: "constant" value: 0.1 } | |
| } | |
| } | |
| layer { | |
| name: "conv2/bn" | |
| type: "BatchNorm" | |
| bottom: "conv2" | |
| top: "conv2" | |
| param { lr_mult: 0 decay_mult: 0 } | |
| param { lr_mult: 0 decay_mult: 0 } | |
| param { lr_mult: 0 decay_mult: 0 } | |
| batch_norm_param { use_global_stats: true } | |
| } | |
| layer { | |
| name: "conv2/scale" | |
| type: "Scale" | |
| bottom: "conv2" | |
| top: "conv2" | |
| param { lr_mult: 0.1 decay_mult: 0 } | |
| param { lr_mult: 0.1 decay_mult: 0 } | |
| scale_param { bias_term: true } | |
| } | |
| layer { | |
| name: "relu2" | |
| type: "ReLU" | |
| bottom: "conv2" | |
| top: "conv2" | |
| } | |
| ################################################################################ | |
| ## Conv 3 | |
| ################################################################################ | |
| layer { | |
| name: "conv3" | |
| type: "Convolution" | |
| bottom: "conv2" | |
| top: "conv3" | |
| param { lr_mult: 0.1 decay_mult: 0.1 } | |
| param { lr_mult: 0.2 decay_mult: 0 } | |
| convolution_param { | |
| num_output: 96 | |
| kernel_size: 3 stride: 2 pad: 1 | |
| weight_filler { type: "xavier" std: 0.1 } | |
| bias_filler { type: "constant" value: 0.1 } | |
| } | |
| } | |
| layer { | |
| name: "conv3/bn" | |
| type: "BatchNorm" | |
| bottom: "conv3" | |
| top: "conv3" | |
| param { lr_mult: 0 decay_mult: 0 } | |
| param { lr_mult: 0 decay_mult: 0 } | |
| param { lr_mult: 0 decay_mult: 0 } | |
| batch_norm_param { use_global_stats: true } | |
| } | |
| layer { | |
| name: "conv3/scale" | |
| type: "Scale" | |
| bottom: "conv3" | |
| top: "conv3" | |
| param { lr_mult: 0.1 decay_mult: 0 } | |
| param { lr_mult: 0.1 decay_mult: 0 } | |
| scale_param { bias_term: true } | |
| } | |
| layer { | |
| name: "relu3" | |
| type: "ReLU" | |
| bottom: "conv3" | |
| top: "conv3" | |
| } | |
| ################################################################################ | |
| ## Inception 3a | |
| ################################################################################ | |
| layer { | |
| name: "inc3a/pool1" | |
| type: "Pooling" | |
| bottom: "conv3" | |
| top: "inc3a/pool1" | |
| pooling_param { | |
| kernel_size: 3 stride: 2 pad: 0 | |
| pool: MAX | |
| } | |
| } | |
| layer { | |
| name: "inc3a/conv1" | |
| type: "Convolution" | |
| bottom: "inc3a/pool1" | |
| top: "inc3a/conv1" | |
| param { lr_mult: 0.1 decay_mult: 0.1 } | |
| param { lr_mult: 0.2 decay_mult: 0 } | |
| convolution_param { | |
| num_output: 96 kernel_size: 1 | |
| weight_filler { type: "xavier" std: 0.1 } | |
| bias_filler { type: "constant" value: 0.1 } | |
| } | |
| } | |
| layer { | |
| name: "inc3a/conv1/bn" | |
| type: "BatchNorm" | |
| bottom: "inc3a/conv1" | |
| top: "inc3a/conv1" | |
| param { lr_mult: 0 decay_mult: 0 } | |
| param { lr_mult: 0 decay_mult: 0 } | |
| param { lr_mult: 0 decay_mult: 0 } | |
| batch_norm_param { use_global_stats: true } | |
| } | |
| layer { | |
| name: "inc3a/conv1/scale" | |
| type: "Scale" | |
| bottom: "inc3a/conv1" | |
| top: "inc3a/conv1" | |
| param { lr_mult: 0.1 decay_mult: 0 } | |
| param { lr_mult: 0.1 decay_mult: 0 } | |
| scale_param { bias_term: true } | |
| } | |
| layer { | |
| name: "inc3a/relu1" | |
| type: "ReLU" | |
| bottom: "inc3a/conv1" | |
| top: "inc3a/conv1" | |
| } | |
| layer { | |
| name: "inc3a/conv3_1" | |
| type: "Convolution" | |
| bottom: "conv3" | |
| top: "inc3a/conv3_1" | |
| param { lr_mult: 0.1 decay_mult: 0.1 } | |
| param { lr_mult: 0.2 decay_mult: 0 } | |
| convolution_param { | |
| num_output: 16 kernel_size: 1 | |
| weight_filler { type: "xavier" std: 0.1 } | |
| bias_filler { type: "constant" value: 0.1 } | |
| } | |
| } | |
| layer { | |
| name: "inc3a/conv3_1/bn" | |
| type: "BatchNorm" | |
| bottom: "inc3a/conv3_1" | |
| top: "inc3a/conv3_1" | |
| param { lr_mult: 0 decay_mult: 0 } | |
| param { lr_mult: 0 decay_mult: 0 } | |
| param { lr_mult: 0 decay_mult: 0 } | |
| batch_norm_param { use_global_stats: true } | |
| } | |
| layer { | |
| name: "inc3a/conv3_1/scale" | |
| type: "Scale" | |
| bottom: "inc3a/conv3_1" | |
| top: "inc3a/conv3_1" | |
| param { lr_mult: 0.1 decay_mult: 0 } | |
| param { lr_mult: 0.1 decay_mult: 0 } | |
| scale_param { bias_term: true } | |
| } | |
| layer { | |
| name: "inc3a/relu3_1" | |
| type: "ReLU" | |
| bottom: "inc3a/conv3_1" | |
| top: "inc3a/conv3_1" | |
| } | |
| layer { | |
| name: "inc3a/conv3_2" | |
| type: "Convolution" | |
| bottom: "inc3a/conv3_1" | |
| top: "inc3a/conv3_2" | |
| param { lr_mult: 0.1 decay_mult: 0.1 } | |
| param { lr_mult: 0.2 decay_mult: 0 } | |
| convolution_param { | |
| num_output: 64 kernel_size: 3 stride: 2 pad: 1 | |
| weight_filler { type: "xavier" std: 0.1 } | |
| bias_filler { type: "constant" value: 0.1 } | |
| } | |
| } | |
| layer { | |
| name: "inc3a/conv3_2/bn" | |
| type: "BatchNorm" | |
| bottom: "inc3a/conv3_2" | |
| top: "inc3a/conv3_2" | |
| param { lr_mult: 0 decay_mult: 0 } | |
| param { lr_mult: 0 decay_mult: 0 } | |
| param { lr_mult: 0 decay_mult: 0 } | |
| batch_norm_param { use_global_stats: true } | |
| } | |
| layer { | |
| name: "inc3a/conv3_2/scale" | |
| type: "Scale" | |
| bottom: "inc3a/conv3_2" | |
| top: "inc3a/conv3_2" | |
| param { lr_mult: 0.1 decay_mult: 0 } | |
| param { lr_mult: 0.1 decay_mult: 0 } | |
| scale_param { bias_term: true } | |
| } | |
| layer { | |
| name: "inc3a/relu3_2" | |
| type: "ReLU" | |
| bottom: "inc3a/conv3_2" | |
| top: "inc3a/conv3_2" | |
| } | |
| layer { | |
| name: "inc3a/conv5_1" | |
| type: "Convolution" | |
| bottom: "conv3" | |
| top: "inc3a/conv5_1" | |
| param { lr_mult: 0.1 decay_mult: 0.1 } | |
| param { lr_mult: 0.2 decay_mult: 0 } | |
| convolution_param { | |
| num_output: 16 kernel_size: 1 | |
| weight_filler { type: "xavier" std: 0.1 } | |
| bias_filler { type: "constant" value: 0.1 } | |
| } | |
| } | |
| layer { | |
| name: "inc3a/conv5_1/bn" | |
| type: "BatchNorm" | |
| bottom: "inc3a/conv5_1" | |
| top: "inc3a/conv5_1" | |
| param { lr_mult: 0 decay_mult: 0 } | |
| param { lr_mult: 0 decay_mult: 0 } | |
| param { lr_mult: 0 decay_mult: 0 } | |
| batch_norm_param { use_global_stats: true } | |
| } | |
| layer { | |
| name: "inc3a/conv5_1/scale" | |
| type: "Scale" | |
| bottom: "inc3a/conv5_1" | |
| top: "inc3a/conv5_1" | |
| param { lr_mult: 0.1 decay_mult: 0 } | |
| param { lr_mult: 0.1 decay_mult: 0 } | |
| scale_param { bias_term: true } | |
| } | |
| layer { | |
| name: "inc3a/relu5_1" | |
| type: "ReLU" | |
| bottom: "inc3a/conv5_1" | |
| top: "inc3a/conv5_1" | |
| } | |
| layer { | |
| name: "inc3a/conv5_2" | |
| type: "Convolution" | |
| bottom: "inc3a/conv5_1" | |
| top: "inc3a/conv5_2" | |
| param { lr_mult: 0.1 decay_mult: 0.1 } | |
| param { lr_mult: 0.2 decay_mult: 0 } | |
| convolution_param { | |
| num_output: 32 kernel_size: 3 pad: 1 | |
| weight_filler { type: "xavier" std: 0.1 } | |
| bias_filler { type: "constant" value: 0.1 } | |
| } | |
| } | |
| layer { | |
| name: "inc3a/conv5_2/bn" | |
| type: "BatchNorm" | |
| bottom: "inc3a/conv5_2" | |
| top: "inc3a/conv5_2" | |
| param { lr_mult: 0 decay_mult: 0 } | |
| param { lr_mult: 0 decay_mult: 0 } | |
| param { lr_mult: 0 decay_mult: 0 } | |
| batch_norm_param { use_global_stats: true } | |
| } | |
| layer { | |
| name: "inc3a/conv5_2/scale" | |
| type: "Scale" | |
| bottom: "inc3a/conv5_2" | |
| top: "inc3a/conv5_2" | |
| param { lr_mult: 0.1 decay_mult: 0 } | |
| param { lr_mult: 0.1 decay_mult: 0 } | |
| scale_param { bias_term: true } | |
| } | |
| layer { | |
| name: "inc3a/relu5_2" | |
| type: "ReLU" | |
| bottom: "inc3a/conv5_2" | |
| top: "inc3a/conv5_2" | |
| } | |
| layer { | |
| name: "inc3a/conv5_3" | |
| type: "Convolution" | |
| bottom: "inc3a/conv5_2" | |
| top: "inc3a/conv5_3" | |
| param { lr_mult: 0.1 decay_mult: 0.1 } | |
| param { lr_mult: 0.2 decay_mult: 0 } | |
| convolution_param { | |
| num_output: 32 kernel_size: 3 stride: 2 pad: 1 | |
| weight_filler { type: "xavier" std: 0.1 } | |
| bias_filler { type: "constant" value: 0.1 } | |
| } | |
| } | |
| layer { | |
| name: "inc3a/conv5_3/bn" | |
| type: "BatchNorm" | |
| bottom: "inc3a/conv5_3" | |
| top: "inc3a/conv5_3" | |
| param { lr_mult: 0 decay_mult: 0 } | |
| param { lr_mult: 0 decay_mult: 0 } | |
| param { lr_mult: 0 decay_mult: 0 } | |
| batch_norm_param { use_global_stats: true } | |
| } | |
| layer { | |
| name: "inc3a/conv5_3/scale" | |
| type: "Scale" | |
| bottom: "inc3a/conv5_3" | |
| top: "inc3a/conv5_3" | |
| param { lr_mult: 0.1 decay_mult: 0 } | |
| param { lr_mult: 0.1 decay_mult: 0 } | |
| scale_param { bias_term: true } | |
| } | |
| layer { | |
| name: "inc3a/relu5_3" | |
| type: "ReLU" | |
| bottom: "inc3a/conv5_3" | |
| top: "inc3a/conv5_3" | |
| } | |
| layer { | |
| name: "inc3a" | |
| type: "Concat" | |
| bottom: "inc3a/conv1" | |
| bottom: "inc3a/conv3_2" | |
| bottom: "inc3a/conv5_3" | |
| top: "inc3a" | |
| } | |
| ################################################################################ | |
| ## Inception 3b | |
| ################################################################################ | |
| layer { | |
| name: "inc3b/conv1" | |
| type: "Convolution" | |
| bottom: "inc3a" | |
| top: "inc3b/conv1" | |
| param { lr_mult: 0.1 decay_mult: 0.1 } | |
| param { lr_mult: 0.2 decay_mult: 0 } | |
| convolution_param { | |
| num_output: 96 kernel_size: 1 | |
| weight_filler { type: "xavier" std: 0.1 } | |
| bias_filler { type: "constant" value: 0.1 } | |
| } | |
| } | |
| layer { | |
| name: "inc3b/conv1/bn" | |
| type: "BatchNorm" | |
| bottom: "inc3b/conv1" | |
| top: "inc3b/conv1" | |
| param { lr_mult: 0 decay_mult: 0 } | |
| param { lr_mult: 0 decay_mult: 0 } | |
| param { lr_mult: 0 decay_mult: 0 } | |
| batch_norm_param { use_global_stats: true } | |
| } | |
| layer { | |
| name: "inc3b/conv1/scale" | |
| type: "Scale" | |
| bottom: "inc3b/conv1" | |
| top: "inc3b/conv1" | |
| param { lr_mult: 0.1 decay_mult: 0 } | |
| param { lr_mult: 0.1 decay_mult: 0 } | |
| scale_param { bias_term: true } | |
| } | |
| layer { | |
| name: "inc3b/relu1" | |
| type: "ReLU" | |
| bottom: "inc3b/conv1" | |
| top: "inc3b/conv1" | |
| } | |
| layer { | |
| name: "inc3b/conv3_1" | |
| type: "Convolution" | |
| bottom: "inc3a" | |
| top: "inc3b/conv3_1" | |
| param { lr_mult: 0.1 decay_mult: 0.1 } | |
| param { lr_mult: 0.2 decay_mult: 0 } | |
| convolution_param { | |
| num_output: 16 kernel_size: 1 | |
| weight_filler { type: "xavier" std: 0.1 } | |
| bias_filler { type: "constant" value: 0.1 } | |
| } | |
| } | |
| layer { | |
| name: "inc3b/conv3_1/bn" | |
| type: "BatchNorm" | |
| bottom: "inc3b/conv3_1" | |
| top: "inc3b/conv3_1" | |
| param { lr_mult: 0 decay_mult: 0 } | |
| param { lr_mult: 0 decay_mult: 0 } | |
| param { lr_mult: 0 decay_mult: 0 } | |
| batch_norm_param { use_global_stats: true } | |
| } | |
| layer { | |
| name: "inc3b/conv3_1/scale" | |
| type: "Scale" | |
| bottom: "inc3b/conv3_1" | |
| top: "inc3b/conv3_1" | |
| param { lr_mult: 0.1 decay_mult: 0 } | |
| param { lr_mult: 0.1 decay_mult: 0 } | |
| scale_param { bias_term: true } | |
| } | |
| layer { | |
| name: "inc3b/relu3_1" | |
| type: "ReLU" | |
| bottom: "inc3b/conv3_1" | |
| top: "inc3b/conv3_1" | |
| } | |
| layer { | |
| name: "inc3b/conv3_2" | |
| type: "Convolution" | |
| bottom: "inc3b/conv3_1" | |
| top: "inc3b/conv3_2" | |
| param { lr_mult: 0.1 decay_mult: 0.1 } | |
| param { lr_mult: 0.2 decay_mult: 0 } | |
| convolution_param { | |
| num_output: 64 kernel_size: 3 pad: 1 | |
| weight_filler { type: "xavier" std: 0.1 } | |
| bias_filler { type: "constant" value: 0.1 } | |
| } | |
| } | |
| layer { | |
| name: "inc3b/conv3_2/bn" | |
| type: "BatchNorm" | |
| bottom: "inc3b/conv3_2" | |
| top: "inc3b/conv3_2" | |
| param { lr_mult: 0 decay_mult: 0 } | |
| param { lr_mult: 0 decay_mult: 0 } | |
| param { lr_mult: 0 decay_mult: 0 } | |
| batch_norm_param { use_global_stats: true } | |
| } | |
| layer { | |
| name: "inc3b/conv3_2/scale" | |
| type: "Scale" | |
| bottom: "inc3b/conv3_2" | |
| top: "inc3b/conv3_2" | |
| param { lr_mult: 0.1 decay_mult: 0 } | |
| param { lr_mult: 0.1 decay_mult: 0 } | |
| scale_param { bias_term: true } | |
| } | |
| layer { | |
| name: "inc3b/relu3_2" | |
| type: "ReLU" | |
| bottom: "inc3b/conv3_2" | |
| top: "inc3b/conv3_2" | |
| } | |
| layer { | |
| name: "inc3b/conv5_1" | |
| type: "Convolution" | |
| bottom: "inc3a" | |
| top: "inc3b/conv5_1" | |
| param { lr_mult: 0.1 decay_mult: 0.1 } | |
| param { lr_mult: 0.2 decay_mult: 0 } | |
| convolution_param { | |
| num_output: 16 kernel_size: 1 | |
| weight_filler { type: "xavier" std: 0.1 } | |
| bias_filler { type: "constant" value: 0.1 } | |
| } | |
| } | |
| layer { | |
| name: "inc3b/conv5_1/bn" | |
| type: "BatchNorm" | |
| bottom: "inc3b/conv5_1" | |
| top: "inc3b/conv5_1" | |
| param { lr_mult: 0 decay_mult: 0 } | |
| param { lr_mult: 0 decay_mult: 0 } | |
| param { lr_mult: 0 decay_mult: 0 } | |
| batch_norm_param { use_global_stats: true } | |
| } | |
| layer { | |
| name: "inc3b/conv5_1/scale" | |
| type: "Scale" | |
| bottom: "inc3b/conv5_1" | |
| top: "inc3b/conv5_1" | |
| param { lr_mult: 0.1 decay_mult: 0 } | |
| param { lr_mult: 0.1 decay_mult: 0 } | |
| scale_param { bias_term: true } | |
| } | |
| layer { | |
| name: "inc3b/relu5_1" | |
| type: "ReLU" | |
| bottom: "inc3b/conv5_1" | |
| top: "inc3b/conv5_1" | |
| } | |
| layer { | |
| name: "inc3b/conv5_2" | |
| type: "Convolution" | |
| bottom: "inc3b/conv5_1" | |
| top: "inc3b/conv5_2" | |
| param { lr_mult: 0.1 decay_mult: 0.1 } | |
| param { lr_mult: 0.2 decay_mult: 0 } | |
| convolution_param { | |
| num_output: 32 kernel_size: 3 pad: 1 | |
| weight_filler { type: "xavier" std: 0.1 } | |
| bias_filler { type: "constant" value: 0.1 } | |
| } | |
| } | |
| layer { | |
| name: "inc3b/conv5_2/bn" | |
| type: "BatchNorm" | |
| bottom: "inc3b/conv5_2" | |
| top: "inc3b/conv5_2" | |
| param { lr_mult: 0 decay_mult: 0 } | |
| param { lr_mult: 0 decay_mult: 0 } | |
| param { lr_mult: 0 decay_mult: 0 } | |
| batch_norm_param { use_global_stats: true } | |
| } | |
| layer { | |
| name: "inc3b/conv5_2/scale" | |
| type: "Scale" | |
| bottom: "inc3b/conv5_2" | |
| top: "inc3b/conv5_2" | |
| param { lr_mult: 0.1 decay_mult: 0 } | |
| param { lr_mult: 0.1 decay_mult: 0 } | |
| scale_param { bias_term: true } | |
| } | |
| layer { | |
| name: "inc3b/relu5_2" | |
| type: "ReLU" | |
| bottom: "inc3b/conv5_2" | |
| top: "inc3b/conv5_2" | |
| } | |
| layer { | |
| name: "inc3b/conv5_3" | |
| type: "Convolution" | |
| bottom: "inc3b/conv5_2" | |
| top: "inc3b/conv5_3" | |
| param { lr_mult: 0.1 decay_mult: 0.1 } | |
| param { lr_mult: 0.2 decay_mult: 0 } | |
| convolution_param { | |
| num_output: 32 kernel_size: 3 pad: 1 | |
| weight_filler { type: "xavier" std: 0.1 } | |
| bias_filler { type: "constant" value: 0.1 } | |
| } | |
| } | |
| layer { | |
| name: "inc3b/conv5_3/bn" | |
| type: "BatchNorm" | |
| bottom: "inc3b/conv5_3" | |
| top: "inc3b/conv5_3" | |
| param { lr_mult: 0 decay_mult: 0 } | |
| param { lr_mult: 0 decay_mult: 0 } | |
| param { lr_mult: 0 decay_mult: 0 } | |
| batch_norm_param { use_global_stats: true } | |
| } | |
| layer { | |
| name: "inc3b/conv5_3/scale" | |
| type: "Scale" | |
| bottom: "inc3b/conv5_3" | |
| top: "inc3b/conv5_3" | |
| param { lr_mult: 0.1 decay_mult: 0 } | |
| param { lr_mult: 0.1 decay_mult: 0 } | |
| scale_param { bias_term: true } | |
| } | |
| layer { | |
| name: "inc3b/relu5_3" | |
| type: "ReLU" | |
| bottom: "inc3b/conv5_3" | |
| top: "inc3b/conv5_3" | |
| } | |
| layer { | |
| name: "inc3b" | |
| type: "Concat" | |
| bottom: "inc3b/conv1" | |
| bottom: "inc3b/conv3_2" | |
| bottom: "inc3b/conv5_3" | |
| top: "inc3b" | |
| } | |
| ################################################################################ | |
| ## Inception 3c | |
| ################################################################################ | |
| layer { | |
| name: "inc3c/conv1" | |
| type: "Convolution" | |
| bottom: "inc3b" | |
| top: "inc3c/conv1" | |
| param { lr_mult: 0.1 decay_mult: 0.1 } | |
| param { lr_mult: 0.2 decay_mult: 0 } | |
| convolution_param { | |
| num_output: 96 kernel_size: 1 | |
| weight_filler { type: "xavier" std: 0.1 } | |
| bias_filler { type: "constant" value: 0.1 } | |
| } | |
| } | |
| layer { | |
| name: "inc3c/conv1/bn" | |
| type: "BatchNorm" | |
| bottom: "inc3c/conv1" | |
| top: "inc3c/conv1" | |
| param { lr_mult: 0 decay_mult: 0 } | |
| param { lr_mult: 0 decay_mult: 0 } | |
| param { lr_mult: 0 decay_mult: 0 } | |
| batch_norm_param { use_global_stats: true } | |
| } | |
| layer { | |
| name: "inc3c/conv1/scale" | |
| type: "Scale" | |
| bottom: "inc3c/conv1" | |
| top: "inc3c/conv1" | |
| param { lr_mult: 0.1 decay_mult: 0 } | |
| param { lr_mult: 0.1 decay_mult: 0 } | |
| scale_param { bias_term: true } | |
| } | |
| layer { | |
| name: "inc3c/relu1" | |
| type: "ReLU" | |
| bottom: "inc3c/conv1" | |
| top: "inc3c/conv1" | |
| } | |
| layer { | |
| name: "inc3c/conv3_1" | |
| type: "Convolution" | |
| bottom: "inc3b" | |
| top: "inc3c/conv3_1" | |
| param { lr_mult: 0.1 decay_mult: 0.1 } | |
| param { lr_mult: 0.2 decay_mult: 0 } | |
| convolution_param { | |
| num_output: 16 kernel_size: 1 | |
| weight_filler { type: "xavier" std: 0.1 } | |
| bias_filler { type: "constant" value: 0.1 } | |
| } | |
| } | |
| layer { | |
| name: "inc3c/conv3_1/bn" | |
| type: "BatchNorm" | |
| bottom: "inc3c/conv3_1" | |
| top: "inc3c/conv3_1" | |
| param { lr_mult: 0 decay_mult: 0 } | |
| param { lr_mult: 0 decay_mult: 0 } | |
| param { lr_mult: 0 decay_mult: 0 } | |
| batch_norm_param { use_global_stats: true } | |
| } | |
| layer { | |
| name: "inc3c/conv3_1/scale" | |
| type: "Scale" | |
| bottom: "inc3c/conv3_1" | |
| top: "inc3c/conv3_1" | |
| param { lr_mult: 0.1 decay_mult: 0 } | |
| param { lr_mult: 0.1 decay_mult: 0 } | |
| scale_param { bias_term: true } | |
| } | |
| layer { | |
| name: "inc3c/relu3_1" | |
| type: "ReLU" | |
| bottom: "inc3c/conv3_1" | |
| top: "inc3c/conv3_1" | |
| } | |
| layer { | |
| name: "inc3c/conv3_2" | |
| type: "Convolution" | |
| bottom: "inc3c/conv3_1" | |
| top: "inc3c/conv3_2" | |
| param { lr_mult: 0.1 decay_mult: 0.1 } | |
| param { lr_mult: 0.2 decay_mult: 0 } | |
| convolution_param { | |
| num_output: 64 kernel_size: 3 pad: 1 | |
| weight_filler { type: "xavier" std: 0.1 } | |
| bias_filler { type: "constant" value: 0.1 } | |
| } | |
| } | |
| layer { | |
| name: "inc3c/conv3_2/bn" | |
| type: "BatchNorm" | |
| bottom: "inc3c/conv3_2" | |
| top: "inc3c/conv3_2" | |
| param { lr_mult: 0 decay_mult: 0 } | |
| param { lr_mult: 0 decay_mult: 0 } | |
| param { lr_mult: 0 decay_mult: 0 } | |
| batch_norm_param { use_global_stats: true } | |
| } | |
| layer { | |
| name: "inc3c/conv3_2/scale" | |
| type: "Scale" | |
| bottom: "inc3c/conv3_2" | |
| top: "inc3c/conv3_2" | |
| param { lr_mult: 0.1 decay_mult: 0 } | |
| param { lr_mult: 0.1 decay_mult: 0 } | |
| scale_param { bias_term: true } | |
| } | |
| layer { | |
| name: "inc3c/relu3_2" | |
| type: "ReLU" | |
| bottom: "inc3c/conv3_2" | |
| top: "inc3c/conv3_2" | |
| } | |
| layer { | |
| name: "inc3c/conv5_1" | |
| type: "Convolution" | |
| bottom: "inc3b" | |
| top: "inc3c/conv5_1" | |
| param { lr_mult: 0.1 decay_mult: 0.1 } | |
| param { lr_mult: 0.2 decay_mult: 0 } | |
| convolution_param { | |
| num_output: 16 kernel_size: 1 | |
| weight_filler { type: "xavier" std: 0.1 } | |
| bias_filler { type: "constant" value: 0.1 } | |
| } | |
| } | |
| layer { | |
| name: "inc3c/conv5_1/bn" | |
| type: "BatchNorm" | |
| bottom: "inc3c/conv5_1" | |
| top: "inc3c/conv5_1" | |
| param { lr_mult: 0 decay_mult: 0 } | |
| param { lr_mult: 0 decay_mult: 0 } | |
| param { lr_mult: 0 decay_mult: 0 } | |
| batch_norm_param { use_global_stats: true } | |
| } | |
| layer { | |
| name: "inc3c/conv5_1/scale" | |
| type: "Scale" | |
| bottom: "inc3c/conv5_1" | |
| top: "inc3c/conv5_1" | |
| param { lr_mult: 0.1 decay_mult: 0 } | |
| param { lr_mult: 0.1 decay_mult: 0 } | |
| scale_param { bias_term: true } | |
| } | |
| layer { | |
| name: "inc3c/relu5_1" | |
| type: "ReLU" | |
| bottom: "inc3c/conv5_1" | |
| top: "inc3c/conv5_1" | |
| } | |
| layer { | |
| name: "inc3c/conv5_2" | |
| type: "Convolution" | |
| bottom: "inc3c/conv5_1" | |
| top: "inc3c/conv5_2" | |
| param { lr_mult: 0.1 decay_mult: 0.1 } | |
| param { lr_mult: 0.2 decay_mult: 0 } | |
| convolution_param { | |
| num_output: 32 kernel_size: 3 pad: 1 | |
| weight_filler { type: "xavier" std: 0.1 } | |
| bias_filler { type: "constant" value: 0.1 } | |
| } | |
| } | |
| layer { | |
| name: "inc3c/conv5_2/bn" | |
| type: "BatchNorm" | |
| bottom: "inc3c/conv5_2" | |
| top: "inc3c/conv5_2" | |
| param { lr_mult: 0 decay_mult: 0 } | |
| param { lr_mult: 0 decay_mult: 0 } | |
| param { lr_mult: 0 decay_mult: 0 } | |
| batch_norm_param { use_global_stats: true } | |
| } | |
| layer { | |
| name: "inc3c/conv5_2/scale" | |
| type: "Scale" | |
| bottom: "inc3c/conv5_2" | |
| top: "inc3c/conv5_2" | |
| param { lr_mult: 0.1 decay_mult: 0 } | |
| param { lr_mult: 0.1 decay_mult: 0 } | |
| scale_param { bias_term: true } | |
| } | |
| layer { | |
| name: "inc3c/relu5_2" | |
| type: "ReLU" | |
| bottom: "inc3c/conv5_2" | |
| top: "inc3c/conv5_2" | |
| } | |
| layer { | |
| name: "inc3c/conv5_3" | |
| type: "Convolution" | |
| bottom: "inc3c/conv5_2" | |
| top: "inc3c/conv5_3" | |
| param { lr_mult: 0.1 decay_mult: 0.1 } | |
| param { lr_mult: 0.2 decay_mult: 0 } | |
| convolution_param { | |
| num_output: 32 kernel_size: 3 pad: 1 | |
| weight_filler { type: "xavier" std: 0.1 } | |
| bias_filler { type: "constant" value: 0.1 } | |
| } | |
| } | |
| layer { | |
| name: "inc3c/conv5_3/bn" | |
| type: "BatchNorm" | |
| bottom: "inc3c/conv5_3" | |
| top: "inc3c/conv5_3" | |
| param { lr_mult: 0 decay_mult: 0 } | |
| param { lr_mult: 0 decay_mult: 0 } | |
| param { lr_mult: 0 decay_mult: 0 } | |
| batch_norm_param { use_global_stats: true } | |
| } | |
| layer { | |
| name: "inc3c/conv5_3/scale" | |
| type: "Scale" | |
| bottom: "inc3c/conv5_3" | |
| top: "inc3c/conv5_3" | |
| param { lr_mult: 0.1 decay_mult: 0 } | |
| param { lr_mult: 0.1 decay_mult: 0 } | |
| scale_param { bias_term: true } | |
| } | |
| layer { | |
| name: "inc3c/relu5_3" | |
| type: "ReLU" | |
| bottom: "inc3c/conv5_3" | |
| top: "inc3c/conv5_3" | |
| } | |
| layer { | |
| name: "inc3c" | |
| type: "Concat" | |
| bottom: "inc3c/conv1" | |
| bottom: "inc3c/conv3_2" | |
| bottom: "inc3c/conv5_3" | |
| top: "inc3c" | |
| } | |
| ################################################################################ | |
| ## Inception 3d | |
| ################################################################################ | |
| layer { | |
| name: "inc3d/conv1" | |
| type: "Convolution" | |
| bottom: "inc3c" | |
| top: "inc3d/conv1" | |
| param { lr_mult: 0.1 decay_mult: 0.1 } | |
| param { lr_mult: 0.2 decay_mult: 0 } | |
| convolution_param { | |
| num_output: 96 kernel_size: 1 | |
| weight_filler { type: "xavier" std: 0.1 } | |
| bias_filler { type: "constant" value: 0.1 } | |
| } | |
| } | |
| layer { | |
| name: "inc3d/conv1/bn" | |
| type: "BatchNorm" | |
| bottom: "inc3d/conv1" | |
| top: "inc3d/conv1" | |
| param { lr_mult: 0 decay_mult: 0 } | |
| param { lr_mult: 0 decay_mult: 0 } | |
| param { lr_mult: 0 decay_mult: 0 } | |
| batch_norm_param { use_global_stats: true } | |
| } | |
| layer { | |
| name: "inc3d/conv1/scale" | |
| type: "Scale" | |
| bottom: "inc3d/conv1" | |
| top: "inc3d/conv1" | |
| param { lr_mult: 0.1 decay_mult: 0 } | |
| param { lr_mult: 0.1 decay_mult: 0 } | |
| scale_param { bias_term: true } | |
| } | |
| layer { | |
| name: "inc3d/relu1" | |
| type: "ReLU" | |
| bottom: "inc3d/conv1" | |
| top: "inc3d/conv1" | |
| } | |
| layer { | |
| name: "inc3d/conv3_1" | |
| type: "Convolution" | |
| bottom: "inc3c" | |
| top: "inc3d/conv3_1" | |
| param { lr_mult: 0.1 decay_mult: 0.1 } | |
| param { lr_mult: 0.2 decay_mult: 0 } | |
| convolution_param { | |
| num_output: 16 kernel_size: 1 | |
| weight_filler { type: "xavier" std: 0.1 } | |
| bias_filler { type: "constant" value: 0.1 } | |
| } | |
| } | |
| layer { | |
| name: "inc3d/conv3_1/bn" | |
| type: "BatchNorm" | |
| bottom: "inc3d/conv3_1" | |
| top: "inc3d/conv3_1" | |
| param { lr_mult: 0 decay_mult: 0 } | |
| param { lr_mult: 0 decay_mult: 0 } | |
| param { lr_mult: 0 decay_mult: 0 } | |
| batch_norm_param { use_global_stats: true } | |
| } | |
| layer { | |
| name: "inc3d/conv3_1/scale" | |
| type: "Scale" | |
| bottom: "inc3d/conv3_1" | |
| top: "inc3d/conv3_1" | |
| param { lr_mult: 0.1 decay_mult: 0 } | |
| param { lr_mult: 0.1 decay_mult: 0 } | |
| scale_param { bias_term: true } | |
| } | |
| layer { | |
| name: "inc3d/relu3_1" | |
| type: "ReLU" | |
| bottom: "inc3d/conv3_1" | |
| top: "inc3d/conv3_1" | |
| } | |
| layer { | |
| name: "inc3d/conv3_2" | |
| type: "Convolution" | |
| bottom: "inc3d/conv3_1" | |
| top: "inc3d/conv3_2" | |
| param { lr_mult: 0.1 decay_mult: 0.1 } | |
| param { lr_mult: 0.2 decay_mult: 0 } | |
| convolution_param { | |
| num_output: 64 kernel_size: 3 pad: 1 | |
| weight_filler { type: "xavier" std: 0.1 } | |
| bias_filler { type: "constant" value: 0.1 } | |
| } | |
| } | |
| layer { | |
| name: "inc3d/conv3_2/bn" | |
| type: "BatchNorm" | |
| bottom: "inc3d/conv3_2" | |
| top: "inc3d/conv3_2" | |
| param { lr_mult: 0 decay_mult: 0 } | |
| param { lr_mult: 0 decay_mult: 0 } | |
| param { lr_mult: 0 decay_mult: 0 } | |
| batch_norm_param { use_global_stats: true } | |
| } | |
| layer { | |
| name: "inc3d/conv3_2/scale" | |
| type: "Scale" | |
| bottom: "inc3d/conv3_2" | |
| top: "inc3d/conv3_2" | |
| param { lr_mult: 0.1 decay_mult: 0 } | |
| param { lr_mult: 0.1 decay_mult: 0 } | |
| scale_param { bias_term: true } | |
| } | |
| layer { | |
| name: "inc3d/relu3_2" | |
| type: "ReLU" | |
| bottom: "inc3d/conv3_2" | |
| top: "inc3d/conv3_2" | |
| } | |
| layer { | |
| name: "inc3d/conv5_1" | |
| type: "Convolution" | |
| bottom: "inc3c" | |
| top: "inc3d/conv5_1" | |
| param { lr_mult: 0.1 decay_mult: 0.1 } | |
| param { lr_mult: 0.2 decay_mult: 0 } | |
| convolution_param { | |
| num_output: 16 kernel_size: 1 | |
| weight_filler { type: "xavier" std: 0.1 } | |
| bias_filler { type: "constant" value: 0.1 } | |
| } | |
| } | |
| layer { | |
| name: "inc3d/conv5_1/bn" | |
| type: "BatchNorm" | |
| bottom: "inc3d/conv5_1" | |
| top: "inc3d/conv5_1" | |
| param { lr_mult: 0 decay_mult: 0 } | |
| param { lr_mult: 0 decay_mult: 0 } | |
| param { lr_mult: 0 decay_mult: 0 } | |
| batch_norm_param { use_global_stats: true } | |
| } | |
| layer { | |
| name: "inc3d/conv5_1/scale" | |
| type: "Scale" | |
| bottom: "inc3d/conv5_1" | |
| top: "inc3d/conv5_1" | |
| param { lr_mult: 0.1 decay_mult: 0 } | |
| param { lr_mult: 0.1 decay_mult: 0 } | |
| scale_param { bias_term: true } | |
| } | |
| layer { | |
| name: "inc3d/relu5_1" | |
| type: "ReLU" | |
| bottom: "inc3d/conv5_1" | |
| top: "inc3d/conv5_1" | |
| } | |
| layer { | |
| name: "inc3d/conv5_2" | |
| type: "Convolution" | |
| bottom: "inc3d/conv5_1" | |
| top: "inc3d/conv5_2" | |
| param { lr_mult: 0.1 decay_mult: 0.1 } | |
| param { lr_mult: 0.2 decay_mult: 0 } | |
| convolution_param { | |
| num_output: 32 kernel_size: 3 pad: 1 | |
| weight_filler { type: "xavier" std: 0.1 } | |
| bias_filler { type: "constant" value: 0.1 } | |
| } | |
| } | |
| layer { | |
| name: "inc3d/conv5_2/bn" | |
| type: "BatchNorm" | |
| bottom: "inc3d/conv5_2" | |
| top: "inc3d/conv5_2" | |
| param { lr_mult: 0 decay_mult: 0 } | |
| param { lr_mult: 0 decay_mult: 0 } | |
| param { lr_mult: 0 decay_mult: 0 } | |
| batch_norm_param { use_global_stats: true } | |
| } | |
| layer { | |
| name: "inc3d/conv5_2/scale" | |
| type: "Scale" | |
| bottom: "inc3d/conv5_2" | |
| top: "inc3d/conv5_2" | |
| param { lr_mult: 0.1 decay_mult: 0 } | |
| param { lr_mult: 0.1 decay_mult: 0 } | |
| scale_param { bias_term: true } | |
| } | |
| layer { | |
| name: "inc3d/relu5_2" | |
| type: "ReLU" | |
| bottom: "inc3d/conv5_2" | |
| top: "inc3d/conv5_2" | |
| } | |
| layer { | |
| name: "inc3d/conv5_3" | |
| type: "Convolution" | |
| bottom: "inc3d/conv5_2" | |
| top: "inc3d/conv5_3" | |
| param { lr_mult: 0.1 decay_mult: 0.1 } | |
| param { lr_mult: 0.2 decay_mult: 0 } | |
| convolution_param { | |
| num_output: 32 kernel_size: 3 pad: 1 | |
| weight_filler { type: "xavier" std: 0.1 } | |
| bias_filler { type: "constant" value: 0.1 } | |
| } | |
| } | |
| layer { | |
| name: "inc3d/conv5_3/bn" | |
| type: "BatchNorm" | |
| bottom: "inc3d/conv5_3" | |
| top: "inc3d/conv5_3" | |
| param { lr_mult: 0 decay_mult: 0 } | |
| param { lr_mult: 0 decay_mult: 0 } | |
| param { lr_mult: 0 decay_mult: 0 } | |
| batch_norm_param { use_global_stats: true } | |
| } | |
| layer { | |
| name: "inc3d/conv5_3/scale" | |
| type: "Scale" | |
| bottom: "inc3d/conv5_3" | |
| top: "inc3d/conv5_3" | |
| param { lr_mult: 0.1 decay_mult: 0 } | |
| param { lr_mult: 0.1 decay_mult: 0 } | |
| scale_param { bias_term: true } | |
| } | |
| layer { | |
| name: "inc3d/relu5_3" | |
| type: "ReLU" | |
| bottom: "inc3d/conv5_3" | |
| top: "inc3d/conv5_3" | |
| } | |
| layer { | |
| name: "inc3d" | |
| type: "Concat" | |
| bottom: "inc3d/conv1" | |
| bottom: "inc3d/conv3_2" | |
| bottom: "inc3d/conv5_3" | |
| top: "inc3d" | |
| } | |
| ################################################################################ | |
| ## Inception 3e | |
| ################################################################################ | |
| layer { | |
| name: "inc3e/conv1" | |
| type: "Convolution" | |
| bottom: "inc3d" | |
| top: "inc3e/conv1" | |
| param { lr_mult: 0.1 decay_mult: 0.1 } | |
| param { lr_mult: 0.2 decay_mult: 0 } | |
| convolution_param { | |
| num_output: 96 kernel_size: 1 | |
| weight_filler { type: "xavier" std: 0.1 } | |
| bias_filler { type: "constant" value: 0.1 } | |
| } | |
| } | |
| layer { | |
| name: "inc3e/conv1/bn" | |
| type: "BatchNorm" | |
| bottom: "inc3e/conv1" | |
| top: "inc3e/conv1" | |
| param { lr_mult: 0 decay_mult: 0 } | |
| param { lr_mult: 0 decay_mult: 0 } | |
| param { lr_mult: 0 decay_mult: 0 } | |
| batch_norm_param { use_global_stats: true } | |
| } | |
| layer { | |
| name: "inc3e/conv1/scale" | |
| type: "Scale" | |
| bottom: "inc3e/conv1" | |
| top: "inc3e/conv1" | |
| param { lr_mult: 0.1 decay_mult: 0 } | |
| param { lr_mult: 0.1 decay_mult: 0 } | |
| scale_param { bias_term: true } | |
| } | |
| layer { | |
| name: "inc3e/relu1" | |
| type: "ReLU" | |
| bottom: "inc3e/conv1" | |
| top: "inc3e/conv1" | |
| } | |
| layer { | |
| name: "inc3e/conv3_1" | |
| type: "Convolution" | |
| bottom: "inc3d" | |
| top: "inc3e/conv3_1" | |
| param { lr_mult: 0.1 decay_mult: 0.1 } | |
| param { lr_mult: 0.2 decay_mult: 0 } | |
| convolution_param { | |
| num_output: 16 kernel_size: 1 | |
| weight_filler { type: "xavier" std: 0.1 } | |
| bias_filler { type: "constant" value: 0.1 } | |
| } | |
| } | |
| layer { | |
| name: "inc3e/conv3_1/bn" | |
| type: "BatchNorm" | |
| bottom: "inc3e/conv3_1" | |
| top: "inc3e/conv3_1" | |
| param { lr_mult: 0 decay_mult: 0 } | |
| param { lr_mult: 0 decay_mult: 0 } | |
| param { lr_mult: 0 decay_mult: 0 } | |
| batch_norm_param { use_global_stats: true } | |
| } | |
| layer { | |
| name: "inc3e/conv3_1/scale" | |
| type: "Scale" | |
| bottom: "inc3e/conv3_1" | |
| top: "inc3e/conv3_1" | |
| param { lr_mult: 0.1 decay_mult: 0 } | |
| param { lr_mult: 0.1 decay_mult: 0 } | |
| scale_param { bias_term: true } | |
| } | |
| layer { | |
| name: "inc3e/relu3_1" | |
| type: "ReLU" | |
| bottom: "inc3e/conv3_1" | |
| top: "inc3e/conv3_1" | |
| } | |
| layer { | |
| name: "inc3e/conv3_2" | |
| type: "Convolution" | |
| bottom: "inc3e/conv3_1" | |
| top: "inc3e/conv3_2" | |
| param { lr_mult: 0.1 decay_mult: 0.1 } | |
| param { lr_mult: 0.2 decay_mult: 0 } | |
| convolution_param { | |
| num_output: 64 kernel_size: 3 pad: 1 | |
| weight_filler { type: "xavier" std: 0.1 } | |
| bias_filler { type: "constant" value: 0.1 } | |
| } | |
| } | |
| layer { | |
| name: "inc3e/conv3_2/bn" | |
| type: "BatchNorm" | |
| bottom: "inc3e/conv3_2" | |
| top: "inc3e/conv3_2" | |
| param { lr_mult: 0 decay_mult: 0 } | |
| param { lr_mult: 0 decay_mult: 0 } | |
| param { lr_mult: 0 decay_mult: 0 } | |
| batch_norm_param { use_global_stats: true } | |
| } | |
| layer { | |
| name: "inc3e/conv3_2/scale" | |
| type: "Scale" | |
| bottom: "inc3e/conv3_2" | |
| top: "inc3e/conv3_2" | |
| param { lr_mult: 0.1 decay_mult: 0 } | |
| param { lr_mult: 0.1 decay_mult: 0 } | |
| scale_param { bias_term: true } | |
| } | |
| layer { | |
| name: "inc3e/relu3_2" | |
| type: "ReLU" | |
| bottom: "inc3e/conv3_2" | |
| top: "inc3e/conv3_2" | |
| } | |
| layer { | |
| name: "inc3e/conv5_1" | |
| type: "Convolution" | |
| bottom: "inc3d" | |
| top: "inc3e/conv5_1" | |
| param { lr_mult: 0.1 decay_mult: 0.1 } | |
| param { lr_mult: 0.2 decay_mult: 0 } | |
| convolution_param { | |
| num_output: 16 kernel_size: 1 | |
| weight_filler { type: "xavier" std: 0.1 } | |
| bias_filler { type: "constant" value: 0.1 } | |
| } | |
| } | |
| layer { | |
| name: "inc3e/conv5_1/bn" | |
| type: "BatchNorm" | |
| bottom: "inc3e/conv5_1" | |
| top: "inc3e/conv5_1" | |
| param { lr_mult: 0 decay_mult: 0 } | |
| param { lr_mult: 0 decay_mult: 0 } | |
| param { lr_mult: 0 decay_mult: 0 } | |
| batch_norm_param { use_global_stats: true } | |
| } | |
| layer { | |
| name: "inc3e/conv5_1/scale" | |
| type: "Scale" | |
| bottom: "inc3e/conv5_1" | |
| top: "inc3e/conv5_1" | |
| param { lr_mult: 0.1 decay_mult: 0 } | |
| param { lr_mult: 0.1 decay_mult: 0 } | |
| scale_param { bias_term: true } | |
| } | |
| layer { | |
| name: "inc3e/relu5_1" | |
| type: "ReLU" | |
| bottom: "inc3e/conv5_1" | |
| top: "inc3e/conv5_1" | |
| } | |
| layer { | |
| name: "inc3e/conv5_2" | |
| type: "Convolution" | |
| bottom: "inc3e/conv5_1" | |
| top: "inc3e/conv5_2" | |
| param { lr_mult: 0.1 decay_mult: 0.1 } | |
| param { lr_mult: 0.2 decay_mult: 0 } | |
| convolution_param { | |
| num_output: 32 kernel_size: 3 pad: 1 | |
| weight_filler { type: "xavier" std: 0.1 } | |
| bias_filler { type: "constant" value: 0.1 } | |
| } | |
| } | |
| layer { | |
| name: "inc3e/conv5_2/bn" | |
| type: "BatchNorm" | |
| bottom: "inc3e/conv5_2" | |
| top: "inc3e/conv5_2" | |
| param { lr_mult: 0 decay_mult: 0 } | |
| param { lr_mult: 0 decay_mult: 0 } | |
| param { lr_mult: 0 decay_mult: 0 } | |
| batch_norm_param { use_global_stats: true } | |
| } | |
| layer { | |
| name: "inc3e/conv5_2/scale" | |
| type: "Scale" | |
| bottom: "inc3e/conv5_2" | |
| top: "inc3e/conv5_2" | |
| param { lr_mult: 0.1 decay_mult: 0 } | |
| param { lr_mult: 0.1 decay_mult: 0 } | |
| scale_param { bias_term: true } | |
| } | |
| layer { | |
| name: "inc3e/relu5_2" | |
| type: "ReLU" | |
| bottom: "inc3e/conv5_2" | |
| top: "inc3e/conv5_2" | |
| } | |
| layer { | |
| name: "inc3e/conv5_3" | |
| type: "Convolution" | |
| bottom: "inc3e/conv5_2" | |
| top: "inc3e/conv5_3" | |
| param { lr_mult: 0.1 decay_mult: 0.1 } | |
| param { lr_mult: 0.2 decay_mult: 0 } | |
| convolution_param { | |
| num_output: 32 kernel_size: 3 pad: 1 | |
| weight_filler { type: "xavier" std: 0.1 } | |
| bias_filler { type: "constant" value: 0.1 } | |
| } | |
| } | |
| layer { | |
| name: "inc3e/conv5_3/bn" | |
| type: "BatchNorm" | |
| bottom: "inc3e/conv5_3" | |
| top: "inc3e/conv5_3" | |
| param { lr_mult: 0 decay_mult: 0 } | |
| param { lr_mult: 0 decay_mult: 0 } | |
| param { lr_mult: 0 decay_mult: 0 } | |
| batch_norm_param { use_global_stats: true } | |
| } | |
| layer { | |
| name: "inc3e/conv5_3/scale" | |
| type: "Scale" | |
| bottom: "inc3e/conv5_3" | |
| top: "inc3e/conv5_3" | |
| param { lr_mult: 0.1 decay_mult: 0 } | |
| param { lr_mult: 0.1 decay_mult: 0 } | |
| scale_param { bias_term: true } | |
| } | |
| layer { | |
| name: "inc3e/relu5_3" | |
| type: "ReLU" | |
| bottom: "inc3e/conv5_3" | |
| top: "inc3e/conv5_3" | |
| } | |
| layer { | |
| name: "inc3e" | |
| type: "Concat" | |
| bottom: "inc3e/conv1" | |
| bottom: "inc3e/conv3_2" | |
| bottom: "inc3e/conv5_3" | |
| top: "inc3e" | |
| } | |
| ################################################################################ | |
| ## Inception 4a | |
| ################################################################################ | |
| layer { | |
| name: "inc4a/pool1" | |
| type: "Pooling" | |
| bottom: "inc3e" | |
| top: "inc4a/pool1" | |
| pooling_param { | |
| kernel_size: 3 stride: 2 pad: 0 | |
| pool: MAX | |
| } | |
| } | |
| layer { | |
| name: "inc4a/conv1" | |
| type: "Convolution" | |
| bottom: "inc4a/pool1" | |
| top: "inc4a/conv1" | |
| param { lr_mult: 0.1 decay_mult: 0.1 } | |
| param { lr_mult: 0.2 decay_mult: 0 } | |
| convolution_param { | |
| num_output: 128 kernel_size: 1 | |
| weight_filler { type: "xavier" std: 0.1 } | |
| bias_filler { type: "constant" value: 0.1 } | |
| } | |
| } | |
| layer { | |
| name: "inc4a/conv1/bn" | |
| type: "BatchNorm" | |
| bottom: "inc4a/conv1" | |
| top: "inc4a/conv1" | |
| param { lr_mult: 0 decay_mult: 0 } | |
| param { lr_mult: 0 decay_mult: 0 } | |
| param { lr_mult: 0 decay_mult: 0 } | |
| batch_norm_param { use_global_stats: true } | |
| } | |
| layer { | |
| name: "inc4a/conv1/scale" | |
| type: "Scale" | |
| bottom: "inc4a/conv1" | |
| top: "inc4a/conv1" | |
| param { lr_mult: 0.1 decay_mult: 0 } | |
| param { lr_mult: 0.1 decay_mult: 0 } | |
| scale_param { bias_term: true } | |
| } | |
| layer { | |
| name: "inc4a/relu1" | |
| type: "ReLU" | |
| bottom: "inc4a/conv1" | |
| top: "inc4a/conv1" | |
| } | |
| layer { | |
| name: "inc4a/conv3_1" | |
| type: "Convolution" | |
| bottom: "inc3e" | |
| top: "inc4a/conv3_1" | |
| param { lr_mult: 0.1 decay_mult: 0.1 } | |
| param { lr_mult: 0.2 decay_mult: 0 } | |
| convolution_param { | |
| num_output: 32 kernel_size: 1 | |
| weight_filler { type: "xavier" std: 0.1 } | |
| bias_filler { type: "constant" value: 0.1 } | |
| } | |
| } | |
| layer { | |
| name: "inc4a/conv3_1/bn" | |
| type: "BatchNorm" | |
| bottom: "inc4a/conv3_1" | |
| top: "inc4a/conv3_1" | |
| param { lr_mult: 0 decay_mult: 0 } | |
| param { lr_mult: 0 decay_mult: 0 } | |
| param { lr_mult: 0 decay_mult: 0 } | |
| batch_norm_param { use_global_stats: true } | |
| } | |
| layer { | |
| name: "inc4a/conv3_1/scale" | |
| type: "Scale" | |
| bottom: "inc4a/conv3_1" | |
| top: "inc4a/conv3_1" | |
| param { lr_mult: 0.1 decay_mult: 0 } | |
| param { lr_mult: 0.1 decay_mult: 0 } | |
| scale_param { bias_term: true } | |
| } | |
| layer { | |
| name: "inc4a/relu3_1" | |
| type: "ReLU" | |
| bottom: "inc4a/conv3_1" | |
| top: "inc4a/conv3_1" | |
| } | |
| layer { | |
| name: "inc4a/conv3_2" | |
| type: "Convolution" | |
| bottom: "inc4a/conv3_1" | |
| top: "inc4a/conv3_2" | |
| param { lr_mult: 0.1 decay_mult: 0.1 } | |
| param { lr_mult: 0.2 decay_mult: 0 } | |
| convolution_param { | |
| num_output: 96 kernel_size: 3 stride: 2 pad: 1 | |
| weight_filler { type: "xavier" std: 0.1 } | |
| bias_filler { type: "constant" value: 0.1 } | |
| } | |
| } | |
| layer { | |
| name: "inc4a/conv3_2/bn" | |
| type: "BatchNorm" | |
| bottom: "inc4a/conv3_2" | |
| top: "inc4a/conv3_2" | |
| param { lr_mult: 0 decay_mult: 0 } | |
| param { lr_mult: 0 decay_mult: 0 } | |
| param { lr_mult: 0 decay_mult: 0 } | |
| batch_norm_param { use_global_stats: true } | |
| } | |
| layer { | |
| name: "inc4a/conv3_2/scale" | |
| type: "Scale" | |
| bottom: "inc4a/conv3_2" | |
| top: "inc4a/conv3_2" | |
| param { lr_mult: 0.1 decay_mult: 0 } | |
| param { lr_mult: 0.1 decay_mult: 0 } | |
| scale_param { bias_term: true } | |
| } | |
| layer { | |
| name: "inc4a/relu3_2" | |
| type: "ReLU" | |
| bottom: "inc4a/conv3_2" | |
| top: "inc4a/conv3_2" | |
| } | |
| layer { | |
| name: "inc4a/conv5_1" | |
| type: "Convolution" | |
| bottom: "inc3e" | |
| top: "inc4a/conv5_1" | |
| param { lr_mult: 0.1 decay_mult: 0.1 } | |
| param { lr_mult: 0.2 decay_mult: 0 } | |
| convolution_param { | |
| num_output: 16 kernel_size: 1 | |
| weight_filler { type: "xavier" std: 0.1 } | |
| bias_filler { type: "constant" value: 0.1 } | |
| } | |
| } | |
| layer { | |
| name: "inc4a/conv5_1/bn" | |
| type: "BatchNorm" | |
| bottom: "inc4a/conv5_1" | |
| top: "inc4a/conv5_1" | |
| param { lr_mult: 0 decay_mult: 0 } | |
| param { lr_mult: 0 decay_mult: 0 } | |
| param { lr_mult: 0 decay_mult: 0 } | |
| batch_norm_param { use_global_stats: true } | |
| } | |
| layer { | |
| name: "inc4a/conv5_1/scale" | |
| type: "Scale" | |
| bottom: "inc4a/conv5_1" | |
| top: "inc4a/conv5_1" | |
| param { lr_mult: 0.1 decay_mult: 0 } | |
| param { lr_mult: 0.1 decay_mult: 0 } | |
| scale_param { bias_term: true } | |
| } | |
| layer { | |
| name: "inc4a/relu5_1" | |
| type: "ReLU" | |
| bottom: "inc4a/conv5_1" | |
| top: "inc4a/conv5_1" | |
| } | |
| layer { | |
| name: "inc4a/conv5_2" | |
| type: "Convolution" | |
| bottom: "inc4a/conv5_1" | |
| top: "inc4a/conv5_2" | |
| param { lr_mult: 0.1 decay_mult: 0.1 } | |
| param { lr_mult: 0.2 decay_mult: 0 } | |
| convolution_param { | |
| num_output: 32 kernel_size: 3 pad: 1 | |
| weight_filler { type: "xavier" std: 0.1 } | |
| bias_filler { type: "constant" value: 0.1 } | |
| } | |
| } | |
| layer { | |
| name: "inc4a/conv5_2/bn" | |
| type: "BatchNorm" | |
| bottom: "inc4a/conv5_2" | |
| top: "inc4a/conv5_2" | |
| param { lr_mult: 0 decay_mult: 0 } | |
| param { lr_mult: 0 decay_mult: 0 } | |
| param { lr_mult: 0 decay_mult: 0 } | |
| batch_norm_param { use_global_stats: true } | |
| } | |
| layer { | |
| name: "inc4a/conv5_2/scale" | |
| type: "Scale" | |
| bottom: "inc4a/conv5_2" | |
| top: "inc4a/conv5_2" | |
| param { lr_mult: 0.1 decay_mult: 0 } | |
| param { lr_mult: 0.1 decay_mult: 0 } | |
| scale_param { bias_term: true } | |
| } | |
| layer { | |
| name: "inc4a/relu5_2" | |
| type: "ReLU" | |
| bottom: "inc4a/conv5_2" | |
| top: "inc4a/conv5_2" | |
| } | |
| layer { | |
| name: "inc4a/conv5_3" | |
| type: "Convolution" | |
| bottom: "inc4a/conv5_2" | |
| top: "inc4a/conv5_3" | |
| param { lr_mult: 0.1 decay_mult: 0.1 } | |
| param { lr_mult: 0.2 decay_mult: 0 } | |
| convolution_param { | |
| num_output: 32 kernel_size: 3 stride: 2 pad: 1 | |
| weight_filler { type: "xavier" std: 0.1 } | |
| bias_filler { type: "constant" value: 0.1 } | |
| } | |
| } | |
| layer { | |
| name: "inc4a/conv5_3/bn" | |
| type: "BatchNorm" | |
| bottom: "inc4a/conv5_3" | |
| top: "inc4a/conv5_3" | |
| param { lr_mult: 0 decay_mult: 0 } | |
| param { lr_mult: 0 decay_mult: 0 } | |
| param { lr_mult: 0 decay_mult: 0 } | |
| batch_norm_param { use_global_stats: true } | |
| } | |
| layer { | |
| name: "inc4a/conv5_3/scale" | |
| type: "Scale" | |
| bottom: "inc4a/conv5_3" | |
| top: "inc4a/conv5_3" | |
| param { lr_mult: 0.1 decay_mult: 0 } | |
| param { lr_mult: 0.1 decay_mult: 0 } | |
| scale_param { bias_term: true } | |
| } | |
| layer { | |
| name: "inc4a/relu5_3" | |
| type: "ReLU" | |
| bottom: "inc4a/conv5_3" | |
| top: "inc4a/conv5_3" | |
| } | |
| layer { | |
| name: "inc4a" | |
| type: "Concat" | |
| bottom: "inc4a/conv1" | |
| bottom: "inc4a/conv3_2" | |
| bottom: "inc4a/conv5_3" | |
| top: "inc4a" | |
| } | |
| ################################################################################ | |
| ## Inception 4b | |
| ################################################################################ | |
| layer { | |
| name: "inc4b/conv1" | |
| type: "Convolution" | |
| bottom: "inc4a" | |
| top: "inc4b/conv1" | |
| param { lr_mult: 0.1 decay_mult: 0.1 } | |
| param { lr_mult: 0.2 decay_mult: 0 } | |
| convolution_param { | |
| num_output: 128 kernel_size: 1 | |
| weight_filler { type: "xavier" std: 0.1 } | |
| bias_filler { type: "constant" value: 0.1 } | |
| } | |
| } | |
| layer { | |
| name: "inc4b/conv1/bn" | |
| type: "BatchNorm" | |
| bottom: "inc4b/conv1" | |
| top: "inc4b/conv1" | |
| param { lr_mult: 0 decay_mult: 0 } | |
| param { lr_mult: 0 decay_mult: 0 } | |
| param { lr_mult: 0 decay_mult: 0 } | |
| batch_norm_param { use_global_stats: true } | |
| } | |
| layer { | |
| name: "inc4b/conv1/scale" | |
| type: "Scale" | |
| bottom: "inc4b/conv1" | |
| top: "inc4b/conv1" | |
| param { lr_mult: 0.1 decay_mult: 0 } | |
| param { lr_mult: 0.1 decay_mult: 0 } | |
| scale_param { bias_term: true } | |
| } | |
| layer { | |
| name: "inc4b/relu1" | |
| type: "ReLU" | |
| bottom: "inc4b/conv1" | |
| top: "inc4b/conv1" | |
| } | |
| layer { | |
| name: "inc4b/conv3_1" | |
| type: "Convolution" | |
| bottom: "inc4a" | |
| top: "inc4b/conv3_1" | |
| param { lr_mult: 0.1 decay_mult: 0.1 } | |
| param { lr_mult: 0.2 decay_mult: 0 } | |
| convolution_param { | |
| num_output: 32 kernel_size: 1 | |
| weight_filler { type: "xavier" std: 0.1 } | |
| bias_filler { type: "constant" value: 0.1 } | |
| } | |
| } | |
| layer { | |
| name: "inc4b/conv3_1/bn" | |
| type: "BatchNorm" | |
| bottom: "inc4b/conv3_1" | |
| top: "inc4b/conv3_1" | |
| param { lr_mult: 0 decay_mult: 0 } | |
| param { lr_mult: 0 decay_mult: 0 } | |
| param { lr_mult: 0 decay_mult: 0 } | |
| batch_norm_param { use_global_stats: true } | |
| } | |
| layer { | |
| name: "inc4b/conv3_1/scale" | |
| type: "Scale" | |
| bottom: "inc4b/conv3_1" | |
| top: "inc4b/conv3_1" | |
| param { lr_mult: 0.1 decay_mult: 0 } | |
| param { lr_mult: 0.1 decay_mult: 0 } | |
| scale_param { bias_term: true } | |
| } | |
| layer { | |
| name: "inc4b/relu3_1" | |
| type: "ReLU" | |
| bottom: "inc4b/conv3_1" | |
| top: "inc4b/conv3_1" | |
| } | |
| layer { | |
| name: "inc4b/conv3_2" | |
| type: "Convolution" | |
| bottom: "inc4b/conv3_1" | |
| top: "inc4b/conv3_2" | |
| param { lr_mult: 0.1 decay_mult: 0.1 } | |
| param { lr_mult: 0.2 decay_mult: 0 } | |
| convolution_param { | |
| num_output: 96 kernel_size: 3 pad: 1 | |
| weight_filler { type: "xavier" std: 0.1 } | |
| bias_filler { type: "constant" value: 0.1 } | |
| } | |
| } | |
| layer { | |
| name: "inc4b/conv3_2/bn" | |
| type: "BatchNorm" | |
| bottom: "inc4b/conv3_2" | |
| top: "inc4b/conv3_2" | |
| param { lr_mult: 0 decay_mult: 0 } | |
| param { lr_mult: 0 decay_mult: 0 } | |
| param { lr_mult: 0 decay_mult: 0 } | |
| batch_norm_param { use_global_stats: true } | |
| } | |
| layer { | |
| name: "inc4b/conv3_2/scale" | |
| type: "Scale" | |
| bottom: "inc4b/conv3_2" | |
| top: "inc4b/conv3_2" | |
| param { lr_mult: 0.1 decay_mult: 0 } | |
| param { lr_mult: 0.1 decay_mult: 0 } | |
| scale_param { bias_term: true } | |
| } | |
| layer { | |
| name: "inc4b/relu3_2" | |
| type: "ReLU" | |
| bottom: "inc4b/conv3_2" | |
| top: "inc4b/conv3_2" | |
| } | |
| layer { | |
| name: "inc4b/conv5_1" | |
| type: "Convolution" | |
| bottom: "inc4a" | |
| top: "inc4b/conv5_1" | |
| param { lr_mult: 0.1 decay_mult: 0.1 } | |
| param { lr_mult: 0.2 decay_mult: 0 } | |
| convolution_param { | |
| num_output: 16 kernel_size: 1 | |
| weight_filler { type: "xavier" std: 0.1 } | |
| bias_filler { type: "constant" value: 0.1 } | |
| } | |
| } | |
| layer { | |
| name: "inc4b/conv5_1/bn" | |
| type: "BatchNorm" | |
| bottom: "inc4b/conv5_1" | |
| top: "inc4b/conv5_1" | |
| param { lr_mult: 0 decay_mult: 0 } | |
| param { lr_mult: 0 decay_mult: 0 } | |
| param { lr_mult: 0 decay_mult: 0 } | |
| batch_norm_param { use_global_stats: true } | |
| } | |
| layer { | |
| name: "inc4b/conv5_1/scale" | |
| type: "Scale" | |
| bottom: "inc4b/conv5_1" | |
| top: "inc4b/conv5_1" | |
| param { lr_mult: 0.1 decay_mult: 0 } | |
| param { lr_mult: 0.1 decay_mult: 0 } | |
| scale_param { bias_term: true } | |
| } | |
| layer { | |
| name: "inc4b/relu5_1" | |
| type: "ReLU" | |
| bottom: "inc4b/conv5_1" | |
| top: "inc4b/conv5_1" | |
| } | |
| layer { | |
| name: "inc4b/conv5_2" | |
| type: "Convolution" | |
| bottom: "inc4b/conv5_1" | |
| top: "inc4b/conv5_2" | |
| param { lr_mult: 0.1 decay_mult: 0.1 } | |
| param { lr_mult: 0.2 decay_mult: 0 } | |
| convolution_param { | |
| num_output: 32 kernel_size: 3 pad: 1 | |
| weight_filler { type: "xavier" std: 0.1 } | |
| bias_filler { type: "constant" value: 0.1 } | |
| } | |
| } | |
| layer { | |
| name: "inc4b/conv5_2/bn" | |
| type: "BatchNorm" | |
| bottom: "inc4b/conv5_2" | |
| top: "inc4b/conv5_2" | |
| param { lr_mult: 0 decay_mult: 0 } | |
| param { lr_mult: 0 decay_mult: 0 } | |
| param { lr_mult: 0 decay_mult: 0 } | |
| batch_norm_param { use_global_stats: true } | |
| } | |
| layer { | |
| name: "inc4b/conv5_2/scale" | |
| type: "Scale" | |
| bottom: "inc4b/conv5_2" | |
| top: "inc4b/conv5_2" | |
| param { lr_mult: 0.1 decay_mult: 0 } | |
| param { lr_mult: 0.1 decay_mult: 0 } | |
| scale_param { bias_term: true } | |
| } | |
| layer { | |
| name: "inc4b/relu5_2" | |
| type: "ReLU" | |
| bottom: "inc4b/conv5_2" | |
| top: "inc4b/conv5_2" | |
| } | |
| layer { | |
| name: "inc4b/conv5_3" | |
| type: "Convolution" | |
| bottom: "inc4b/conv5_2" | |
| top: "inc4b/conv5_3" | |
| param { lr_mult: 0.1 decay_mult: 0.1 } | |
| param { lr_mult: 0.2 decay_mult: 0 } | |
| convolution_param { | |
| num_output: 32 kernel_size: 3 pad: 1 | |
| weight_filler { type: "xavier" std: 0.1 } | |
| bias_filler { type: "constant" value: 0.1 } | |
| } | |
| } | |
| layer { | |
| name: "inc4b/conv5_3/bn" | |
| type: "BatchNorm" | |
| bottom: "inc4b/conv5_3" | |
| top: "inc4b/conv5_3" | |
| param { lr_mult: 0 decay_mult: 0 } | |
| param { lr_mult: 0 decay_mult: 0 } | |
| param { lr_mult: 0 decay_mult: 0 } | |
| batch_norm_param { use_global_stats: true } | |
| } | |
| layer { | |
| name: "inc4b/conv5_3/scale" | |
| type: "Scale" | |
| bottom: "inc4b/conv5_3" | |
| top: "inc4b/conv5_3" | |
| param { lr_mult: 0.1 decay_mult: 0 } | |
| param { lr_mult: 0.1 decay_mult: 0 } | |
| scale_param { bias_term: true } | |
| } | |
| layer { | |
| name: "inc4b/relu5_3" | |
| type: "ReLU" | |
| bottom: "inc4b/conv5_3" | |
| top: "inc4b/conv5_3" | |
| } | |
| layer { | |
| name: "inc4b" | |
| type: "Concat" | |
| bottom: "inc4b/conv1" | |
| bottom: "inc4b/conv3_2" | |
| bottom: "inc4b/conv5_3" | |
| top: "inc4b" | |
| } | |
| ################################################################################ | |
| ## Inception 4c | |
| ################################################################################ | |
| layer { | |
| name: "inc4c/conv1" | |
| type: "Convolution" | |
| bottom: "inc4b" | |
| top: "inc4c/conv1" | |
| param { lr_mult: 0.1 decay_mult: 0.1 } | |
| param { lr_mult: 0.2 decay_mult: 0 } | |
| convolution_param { | |
| num_output: 128 kernel_size: 1 | |
| weight_filler { type: "xavier" std: 0.1 } | |
| bias_filler { type: "constant" value: 0.1 } | |
| } | |
| } | |
| layer { | |
| name: "inc4c/conv1/bn" | |
| type: "BatchNorm" | |
| bottom: "inc4c/conv1" | |
| top: "inc4c/conv1" | |
| param { lr_mult: 0 decay_mult: 0 } | |
| param { lr_mult: 0 decay_mult: 0 } | |
| param { lr_mult: 0 decay_mult: 0 } | |
| batch_norm_param { use_global_stats: true } | |
| } | |
| layer { | |
| name: "inc4c/conv1/scale" | |
| type: "Scale" | |
| bottom: "inc4c/conv1" | |
| top: "inc4c/conv1" | |
| param { lr_mult: 0.1 decay_mult: 0 } | |
| param { lr_mult: 0.1 decay_mult: 0 } | |
| scale_param { bias_term: true } | |
| } | |
| layer { | |
| name: "inc4c/relu1" | |
| type: "ReLU" | |
| bottom: "inc4c/conv1" | |
| top: "inc4c/conv1" | |
| } | |
| layer { | |
| name: "inc4c/conv3_1" | |
| type: "Convolution" | |
| bottom: "inc4b" | |
| top: "inc4c/conv3_1" | |
| param { lr_mult: 0.1 decay_mult: 0.1 } | |
| param { lr_mult: 0.2 decay_mult: 0 } | |
| convolution_param { | |
| num_output: 32 kernel_size: 1 | |
| weight_filler { type: "xavier" std: 0.1 } | |
| bias_filler { type: "constant" value: 0.1 } | |
| } | |
| } | |
| layer { | |
| name: "inc4c/conv3_1/bn" | |
| type: "BatchNorm" | |
| bottom: "inc4c/conv3_1" | |
| top: "inc4c/conv3_1" | |
| param { lr_mult: 0 decay_mult: 0 } | |
| param { lr_mult: 0 decay_mult: 0 } | |
| param { lr_mult: 0 decay_mult: 0 } | |
| batch_norm_param { use_global_stats: true } | |
| } | |
| layer { | |
| name: "inc4c/conv3_1/scale" | |
| type: "Scale" | |
| bottom: "inc4c/conv3_1" | |
| top: "inc4c/conv3_1" | |
| param { lr_mult: 0.1 decay_mult: 0 } | |
| param { lr_mult: 0.1 decay_mult: 0 } | |
| scale_param { bias_term: true } | |
| } | |
| layer { | |
| name: "inc4c/relu3_1" | |
| type: "ReLU" | |
| bottom: "inc4c/conv3_1" | |
| top: "inc4c/conv3_1" | |
| } | |
| layer { | |
| name: "inc4c/conv3_2" | |
| type: "Convolution" | |
| bottom: "inc4c/conv3_1" | |
| top: "inc4c/conv3_2" | |
| param { lr_mult: 0.1 decay_mult: 0.1 } | |
| param { lr_mult: 0.2 decay_mult: 0 } | |
| convolution_param { | |
| num_output: 96 kernel_size: 3 pad: 1 | |
| weight_filler { type: "xavier" std: 0.1 } | |
| bias_filler { type: "constant" value: 0.1 } | |
| } | |
| } | |
| layer { | |
| name: "inc4c/conv3_2/bn" | |
| type: "BatchNorm" | |
| bottom: "inc4c/conv3_2" | |
| top: "inc4c/conv3_2" | |
| param { lr_mult: 0 decay_mult: 0 } | |
| param { lr_mult: 0 decay_mult: 0 } | |
| param { lr_mult: 0 decay_mult: 0 } | |
| batch_norm_param { use_global_stats: true } | |
| } | |
| layer { | |
| name: "inc4c/conv3_2/scale" | |
| type: "Scale" | |
| bottom: "inc4c/conv3_2" | |
| top: "inc4c/conv3_2" | |
| param { lr_mult: 0.1 decay_mult: 0 } | |
| param { lr_mult: 0.1 decay_mult: 0 } | |
| scale_param { bias_term: true } | |
| } | |
| layer { | |
| name: "inc4c/relu3_2" | |
| type: "ReLU" | |
| bottom: "inc4c/conv3_2" | |
| top: "inc4c/conv3_2" | |
| } | |
| layer { | |
| name: "inc4c/conv5_1" | |
| type: "Convolution" | |
| bottom: "inc4b" | |
| top: "inc4c/conv5_1" | |
| param { lr_mult: 0.1 decay_mult: 0.1 } | |
| param { lr_mult: 0.2 decay_mult: 0 } | |
| convolution_param { | |
| num_output: 16 kernel_size: 1 | |
| weight_filler { type: "xavier" std: 0.1 } | |
| bias_filler { type: "constant" value: 0.1 } | |
| } | |
| } | |
| layer { | |
| name: "inc4c/conv5_1/bn" | |
| type: "BatchNorm" | |
| bottom: "inc4c/conv5_1" | |
| top: "inc4c/conv5_1" | |
| param { lr_mult: 0 decay_mult: 0 } | |
| param { lr_mult: 0 decay_mult: 0 } | |
| param { lr_mult: 0 decay_mult: 0 } | |
| batch_norm_param { use_global_stats: true } | |
| } | |
| layer { | |
| name: "inc4c/conv5_1/scale" | |
| type: "Scale" | |
| bottom: "inc4c/conv5_1" | |
| top: "inc4c/conv5_1" | |
| param { lr_mult: 0.1 decay_mult: 0 } | |
| param { lr_mult: 0.1 decay_mult: 0 } | |
| scale_param { bias_term: true } | |
| } | |
| layer { | |
| name: "inc4c/relu5_1" | |
| type: "ReLU" | |
| bottom: "inc4c/conv5_1" | |
| top: "inc4c/conv5_1" | |
| } | |
| layer { | |
| name: "inc4c/conv5_2" | |
| type: "Convolution" | |
| bottom: "inc4c/conv5_1" | |
| top: "inc4c/conv5_2" | |
| param { lr_mult: 0.1 decay_mult: 0.1 } | |
| param { lr_mult: 0.2 decay_mult: 0 } | |
| convolution_param { | |
| num_output: 32 kernel_size: 3 pad: 1 | |
| weight_filler { type: "xavier" std: 0.1 } | |
| bias_filler { type: "constant" value: 0.1 } | |
| } | |
| } | |
| layer { | |
| name: "inc4c/conv5_2/bn" | |
| type: "BatchNorm" | |
| bottom: "inc4c/conv5_2" | |
| top: "inc4c/conv5_2" | |
| param { lr_mult: 0 decay_mult: 0 } | |
| param { lr_mult: 0 decay_mult: 0 } | |
| param { lr_mult: 0 decay_mult: 0 } | |
| batch_norm_param { use_global_stats: true } | |
| } | |
| layer { | |
| name: "inc4c/conv5_2/scale" | |
| type: "Scale" | |
| bottom: "inc4c/conv5_2" | |
| top: "inc4c/conv5_2" | |
| param { lr_mult: 0.1 decay_mult: 0 } | |
| param { lr_mult: 0.1 decay_mult: 0 } | |
| scale_param { bias_term: true } | |
| } | |
| layer { | |
| name: "inc4c/relu5_2" | |
| type: "ReLU" | |
| bottom: "inc4c/conv5_2" | |
| top: "inc4c/conv5_2" | |
| } | |
| layer { | |
| name: "inc4c/conv5_3" | |
| type: "Convolution" | |
| bottom: "inc4c/conv5_2" | |
| top: "inc4c/conv5_3" | |
| param { lr_mult: 0.1 decay_mult: 0.1 } | |
| param { lr_mult: 0.2 decay_mult: 0 } | |
| convolution_param { | |
| num_output: 32 kernel_size: 3 pad: 1 | |
| weight_filler { type: "xavier" std: 0.1 } | |
| bias_filler { type: "constant" value: 0.1 } | |
| } | |
| } | |
| layer { | |
| name: "inc4c/conv5_3/bn" | |
| type: "BatchNorm" | |
| bottom: "inc4c/conv5_3" | |
| top: "inc4c/conv5_3" | |
| param { lr_mult: 0 decay_mult: 0 } | |
| param { lr_mult: 0 decay_mult: 0 } | |
| param { lr_mult: 0 decay_mult: 0 } | |
| batch_norm_param { use_global_stats: true } | |
| } | |
| layer { | |
| name: "inc4c/conv5_3/scale" | |
| type: "Scale" | |
| bottom: "inc4c/conv5_3" | |
| top: "inc4c/conv5_3" | |
| param { lr_mult: 0.1 decay_mult: 0 } | |
| param { lr_mult: 0.1 decay_mult: 0 } | |
| scale_param { bias_term: true } | |
| } | |
| layer { | |
| name: "inc4c/relu5_3" | |
| type: "ReLU" | |
| bottom: "inc4c/conv5_3" | |
| top: "inc4c/conv5_3" | |
| } | |
| layer { | |
| name: "inc4c" | |
| type: "Concat" | |
| bottom: "inc4c/conv1" | |
| bottom: "inc4c/conv3_2" | |
| bottom: "inc4c/conv5_3" | |
| top: "inc4c" | |
| } | |
| ################################################################################ | |
| ## Inception 4d | |
| ################################################################################ | |
| layer { | |
| name: "inc4d/conv1" | |
| type: "Convolution" | |
| bottom: "inc4c" | |
| top: "inc4d/conv1" | |
| param { lr_mult: 0.1 decay_mult: 0.1 } | |
| param { lr_mult: 0.2 decay_mult: 0 } | |
| convolution_param { | |
| num_output: 128 kernel_size: 1 | |
| weight_filler { type: "xavier" std: 0.1 } | |
| bias_filler { type: "constant" value: 0.1 } | |
| } | |
| } | |
| layer { | |
| name: "inc4d/conv1/bn" | |
| type: "BatchNorm" | |
| bottom: "inc4d/conv1" | |
| top: "inc4d/conv1" | |
| param { lr_mult: 0 decay_mult: 0 } | |
| param { lr_mult: 0 decay_mult: 0 } | |
| param { lr_mult: 0 decay_mult: 0 } | |
| batch_norm_param { use_global_stats: true } | |
| } | |
| layer { | |
| name: "inc4d/conv1/scale" | |
| type: "Scale" | |
| bottom: "inc4d/conv1" | |
| top: "inc4d/conv1" | |
| param { lr_mult: 0.1 decay_mult: 0 } | |
| param { lr_mult: 0.1 decay_mult: 0 } | |
| scale_param { bias_term: true } | |
| } | |
| layer { | |
| name: "inc4d/relu1" | |
| type: "ReLU" | |
| bottom: "inc4d/conv1" | |
| top: "inc4d/conv1" | |
| } | |
| layer { | |
| name: "inc4d/conv3_1" | |
| type: "Convolution" | |
| bottom: "inc4c" | |
| top: "inc4d/conv3_1" | |
| param { lr_mult: 0.1 decay_mult: 0.1 } | |
| param { lr_mult: 0.2 decay_mult: 0 } | |
| convolution_param { | |
| num_output: 32 kernel_size: 1 | |
| weight_filler { type: "xavier" std: 0.1 } | |
| bias_filler { type: "constant" value: 0.1 } | |
| } | |
| } | |
| layer { | |
| name: "inc4d/conv3_1/bn" | |
| type: "BatchNorm" | |
| bottom: "inc4d/conv3_1" | |
| top: "inc4d/conv3_1" | |
| param { lr_mult: 0 decay_mult: 0 } | |
| param { lr_mult: 0 decay_mult: 0 } | |
| param { lr_mult: 0 decay_mult: 0 } | |
| batch_norm_param { use_global_stats: true } | |
| } | |
| layer { | |
| name: "inc4d/conv3_1/scale" | |
| type: "Scale" | |
| bottom: "inc4d/conv3_1" | |
| top: "inc4d/conv3_1" | |
| param { lr_mult: 0.1 decay_mult: 0 } | |
| param { lr_mult: 0.1 decay_mult: 0 } | |
| scale_param { bias_term: true } | |
| } | |
| layer { | |
| name: "inc4d/relu3_1" | |
| type: "ReLU" | |
| bottom: "inc4d/conv3_1" | |
| top: "inc4d/conv3_1" | |
| } | |
| layer { | |
| name: "inc4d/conv3_2" | |
| type: "Convolution" | |
| bottom: "inc4d/conv3_1" | |
| top: "inc4d/conv3_2" | |
| param { lr_mult: 0.1 decay_mult: 0.1 } | |
| param { lr_mult: 0.2 decay_mult: 0 } | |
| convolution_param { | |
| num_output: 96 kernel_size: 3 pad: 1 | |
| weight_filler { type: "xavier" std: 0.1 } | |
| bias_filler { type: "constant" value: 0.1 } | |
| } | |
| } | |
| layer { | |
| name: "inc4d/conv3_2/bn" | |
| type: "BatchNorm" | |
| bottom: "inc4d/conv3_2" | |
| top: "inc4d/conv3_2" | |
| param { lr_mult: 0 decay_mult: 0 } | |
| param { lr_mult: 0 decay_mult: 0 } | |
| param { lr_mult: 0 decay_mult: 0 } | |
| batch_norm_param { use_global_stats: true } | |
| } | |
| layer { | |
| name: "inc4d/conv3_2/scale" | |
| type: "Scale" | |
| bottom: "inc4d/conv3_2" | |
| top: "inc4d/conv3_2" | |
| param { lr_mult: 0.1 decay_mult: 0 } | |
| param { lr_mult: 0.1 decay_mult: 0 } | |
| scale_param { bias_term: true } | |
| } | |
| layer { | |
| name: "inc4d/relu3_2" | |
| type: "ReLU" | |
| bottom: "inc4d/conv3_2" | |
| top: "inc4d/conv3_2" | |
| } | |
| layer { | |
| name: "inc4d/conv5_1" | |
| type: "Convolution" | |
| bottom: "inc4c" | |
| top: "inc4d/conv5_1" | |
| param { lr_mult: 0.1 decay_mult: 0.1 } | |
| param { lr_mult: 0.2 decay_mult: 0 } | |
| convolution_param { | |
| num_output: 16 kernel_size: 1 | |
| weight_filler { type: "xavier" std: 0.1 } | |
| bias_filler { type: "constant" value: 0.1 } | |
| } | |
| } | |
| layer { | |
| name: "inc4d/conv5_1/bn" | |
| type: "BatchNorm" | |
| bottom: "inc4d/conv5_1" | |
| top: "inc4d/conv5_1" | |
| param { lr_mult: 0 decay_mult: 0 } | |
| param { lr_mult: 0 decay_mult: 0 } | |
| param { lr_mult: 0 decay_mult: 0 } | |
| batch_norm_param { use_global_stats: true } | |
| } | |
| layer { | |
| name: "inc4d/conv5_1/scale" | |
| type: "Scale" | |
| bottom: "inc4d/conv5_1" | |
| top: "inc4d/conv5_1" | |
| param { lr_mult: 0.1 decay_mult: 0 } | |
| param { lr_mult: 0.1 decay_mult: 0 } | |
| scale_param { bias_term: true } | |
| } | |
| layer { | |
| name: "inc4d/relu5_1" | |
| type: "ReLU" | |
| bottom: "inc4d/conv5_1" | |
| top: "inc4d/conv5_1" | |
| } | |
| layer { | |
| name: "inc4d/conv5_2" | |
| type: "Convolution" | |
| bottom: "inc4d/conv5_1" | |
| top: "inc4d/conv5_2" | |
| param { lr_mult: 0.1 decay_mult: 0.1 } | |
| param { lr_mult: 0.2 decay_mult: 0 } | |
| convolution_param { | |
| num_output: 32 kernel_size: 3 pad: 1 | |
| weight_filler { type: "xavier" std: 0.1 } | |
| bias_filler { type: "constant" value: 0.1 } | |
| } | |
| } | |
| layer { | |
| name: "inc4d/conv5_2/bn" | |
| type: "BatchNorm" | |
| bottom: "inc4d/conv5_2" | |
| top: "inc4d/conv5_2" | |
| param { lr_mult: 0 decay_mult: 0 } | |
| param { lr_mult: 0 decay_mult: 0 } | |
| param { lr_mult: 0 decay_mult: 0 } | |
| batch_norm_param { use_global_stats: true } | |
| } | |
| layer { | |
| name: "inc4d/conv5_2/scale" | |
| type: "Scale" | |
| bottom: "inc4d/conv5_2" | |
| top: "inc4d/conv5_2" | |
| param { lr_mult: 0.1 decay_mult: 0 } | |
| param { lr_mult: 0.1 decay_mult: 0 } | |
| scale_param { bias_term: true } | |
| } | |
| layer { | |
| name: "inc4d/relu5_2" | |
| type: "ReLU" | |
| bottom: "inc4d/conv5_2" | |
| top: "inc4d/conv5_2" | |
| } | |
| layer { | |
| name: "inc4d/conv5_3" | |
| type: "Convolution" | |
| bottom: "inc4d/conv5_2" | |
| top: "inc4d/conv5_3" | |
| param { lr_mult: 0.1 decay_mult: 0.1 } | |
| param { lr_mult: 0.2 decay_mult: 0 } | |
| convolution_param { | |
| num_output: 32 kernel_size: 3 pad: 1 | |
| weight_filler { type: "xavier" std: 0.1 } | |
| bias_filler { type: "constant" value: 0.1 } | |
| } | |
| } | |
| layer { | |
| name: "inc4d/conv5_3/bn" | |
| type: "BatchNorm" | |
| bottom: "inc4d/conv5_3" | |
| top: "inc4d/conv5_3" | |
| param { lr_mult: 0 decay_mult: 0 } | |
| param { lr_mult: 0 decay_mult: 0 } | |
| param { lr_mult: 0 decay_mult: 0 } | |
| batch_norm_param { use_global_stats: true } | |
| } | |
| layer { | |
| name: "inc4d/conv5_3/scale" | |
| type: "Scale" | |
| bottom: "inc4d/conv5_3" | |
| top: "inc4d/conv5_3" | |
| param { lr_mult: 0.1 decay_mult: 0 } | |
| param { lr_mult: 0.1 decay_mult: 0 } | |
| scale_param { bias_term: true } | |
| } | |
| layer { | |
| name: "inc4d/relu5_3" | |
| type: "ReLU" | |
| bottom: "inc4d/conv5_3" | |
| top: "inc4d/conv5_3" | |
| } | |
| layer { | |
| name: "inc4d" | |
| type: "Concat" | |
| bottom: "inc4d/conv1" | |
| bottom: "inc4d/conv3_2" | |
| bottom: "inc4d/conv5_3" | |
| top: "inc4d" | |
| } | |
| ################################################################################ | |
| ## Inception 4e | |
| ################################################################################ | |
| layer { | |
| name: "inc4e/conv1" | |
| type: "Convolution" | |
| bottom: "inc4d" | |
| top: "inc4e/conv1" | |
| param { lr_mult: 0.1 decay_mult: 0.1 } | |
| param { lr_mult: 0.2 decay_mult: 0 } | |
| convolution_param { | |
| num_output: 128 kernel_size: 1 | |
| weight_filler { type: "xavier" std: 0.1 } | |
| bias_filler { type: "constant" value: 0.1 } | |
| } | |
| } | |
| layer { | |
| name: "inc4e/conv1/bn" | |
| type: "BatchNorm" | |
| bottom: "inc4e/conv1" | |
| top: "inc4e/conv1" | |
| param { lr_mult: 0 decay_mult: 0 } | |
| param { lr_mult: 0 decay_mult: 0 } | |
| param { lr_mult: 0 decay_mult: 0 } | |
| batch_norm_param { use_global_stats: true } | |
| } | |
| layer { | |
| name: "inc4e/conv1/scale" | |
| type: "Scale" | |
| bottom: "inc4e/conv1" | |
| top: "inc4e/conv1" | |
| param { lr_mult: 0.1 decay_mult: 0 } | |
| param { lr_mult: 0.1 decay_mult: 0 } | |
| scale_param { bias_term: true } | |
| } | |
| layer { | |
| name: "inc4e/relu1" | |
| type: "ReLU" | |
| bottom: "inc4e/conv1" | |
| top: "inc4e/conv1" | |
| } | |
| layer { | |
| name: "inc4e/conv3_1" | |
| type: "Convolution" | |
| bottom: "inc4d" | |
| top: "inc4e/conv3_1" | |
| param { lr_mult: 0.1 decay_mult: 0.1 } | |
| param { lr_mult: 0.2 decay_mult: 0 } | |
| convolution_param { | |
| num_output: 32 kernel_size: 1 | |
| weight_filler { type: "xavier" std: 0.1 } | |
| bias_filler { type: "constant" value: 0.1 } | |
| } | |
| } | |
| layer { | |
| name: "inc4e/conv3_1/bn" | |
| type: "BatchNorm" | |
| bottom: "inc4e/conv3_1" | |
| top: "inc4e/conv3_1" | |
| param { lr_mult: 0 decay_mult: 0 } | |
| param { lr_mult: 0 decay_mult: 0 } | |
| param { lr_mult: 0 decay_mult: 0 } | |
| batch_norm_param { use_global_stats: true } | |
| } | |
| layer { | |
| name: "inc4e/conv3_1/scale" | |
| type: "Scale" | |
| bottom: "inc4e/conv3_1" | |
| top: "inc4e/conv3_1" | |
| param { lr_mult: 0.1 decay_mult: 0 } | |
| param { lr_mult: 0.1 decay_mult: 0 } | |
| scale_param { bias_term: true } | |
| } | |
| layer { | |
| name: "inc4e/relu3_1" | |
| type: "ReLU" | |
| bottom: "inc4e/conv3_1" | |
| top: "inc4e/conv3_1" | |
| } | |
| layer { | |
| name: "inc4e/conv3_2" | |
| type: "Convolution" | |
| bottom: "inc4e/conv3_1" | |
| top: "inc4e/conv3_2" | |
| param { lr_mult: 0.1 decay_mult: 0.1 } | |
| param { lr_mult: 0.2 decay_mult: 0 } | |
| convolution_param { | |
| num_output: 96 kernel_size: 3 pad: 1 | |
| weight_filler { type: "xavier" std: 0.1 } | |
| bias_filler { type: "constant" value: 0.1 } | |
| } | |
| } | |
| layer { | |
| name: "inc4e/conv3_2/bn" | |
| type: "BatchNorm" | |
| bottom: "inc4e/conv3_2" | |
| top: "inc4e/conv3_2" | |
| param { lr_mult: 0 decay_mult: 0 } | |
| param { lr_mult: 0 decay_mult: 0 } | |
| param { lr_mult: 0 decay_mult: 0 } | |
| batch_norm_param { use_global_stats: true } | |
| } | |
| layer { | |
| name: "inc4e/conv3_2/scale" | |
| type: "Scale" | |
| bottom: "inc4e/conv3_2" | |
| top: "inc4e/conv3_2" | |
| param { lr_mult: 0.1 decay_mult: 0 } | |
| param { lr_mult: 0.1 decay_mult: 0 } | |
| scale_param { bias_term: true } | |
| } | |
| layer { | |
| name: "inc4e/relu3_2" | |
| type: "ReLU" | |
| bottom: "inc4e/conv3_2" | |
| top: "inc4e/conv3_2" | |
| } | |
| layer { | |
| name: "inc4e/conv5_1" | |
| type: "Convolution" | |
| bottom: "inc4d" | |
| top: "inc4e/conv5_1" | |
| param { lr_mult: 0.1 decay_mult: 0.1 } | |
| param { lr_mult: 0.2 decay_mult: 0 } | |
| convolution_param { | |
| num_output: 16 kernel_size: 1 | |
| weight_filler { type: "xavier" std: 0.1 } | |
| bias_filler { type: "constant" value: 0.1 } | |
| } | |
| } | |
| layer { | |
| name: "inc4e/conv5_1/bn" | |
| type: "BatchNorm" | |
| bottom: "inc4e/conv5_1" | |
| top: "inc4e/conv5_1" | |
| param { lr_mult: 0 decay_mult: 0 } | |
| param { lr_mult: 0 decay_mult: 0 } | |
| param { lr_mult: 0 decay_mult: 0 } | |
| batch_norm_param { use_global_stats: true } | |
| } | |
| layer { | |
| name: "inc4e/conv5_1/scale" | |
| type: "Scale" | |
| bottom: "inc4e/conv5_1" | |
| top: "inc4e/conv5_1" | |
| param { lr_mult: 0.1 decay_mult: 0 } | |
| param { lr_mult: 0.1 decay_mult: 0 } | |
| scale_param { bias_term: true } | |
| } | |
| layer { | |
| name: "inc4e/relu5_1" | |
| type: "ReLU" | |
| bottom: "inc4e/conv5_1" | |
| top: "inc4e/conv5_1" | |
| } | |
| layer { | |
| name: "inc4e/conv5_2" | |
| type: "Convolution" | |
| bottom: "inc4e/conv5_1" | |
| top: "inc4e/conv5_2" | |
| param { lr_mult: 0.1 decay_mult: 0.1 } | |
| param { lr_mult: 0.2 decay_mult: 0 } | |
| convolution_param { | |
| num_output: 32 kernel_size: 3 pad: 1 | |
| weight_filler { type: "xavier" std: 0.1 } | |
| bias_filler { type: "constant" value: 0.1 } | |
| } | |
| } | |
| layer { | |
| name: "inc4e/conv5_2/bn" | |
| type: "BatchNorm" | |
| bottom: "inc4e/conv5_2" | |
| top: "inc4e/conv5_2" | |
| param { lr_mult: 0 decay_mult: 0 } | |
| param { lr_mult: 0 decay_mult: 0 } | |
| param { lr_mult: 0 decay_mult: 0 } | |
| batch_norm_param { use_global_stats: true } | |
| } | |
| layer { | |
| name: "inc4e/conv5_2/scale" | |
| type: "Scale" | |
| bottom: "inc4e/conv5_2" | |
| top: "inc4e/conv5_2" | |
| param { lr_mult: 0.1 decay_mult: 0 } | |
| param { lr_mult: 0.1 decay_mult: 0 } | |
| scale_param { bias_term: true } | |
| } | |
| layer { | |
| name: "inc4e/relu5_2" | |
| type: "ReLU" | |
| bottom: "inc4e/conv5_2" | |
| top: "inc4e/conv5_2" | |
| } | |
| layer { | |
| name: "inc4e/conv5_3" | |
| type: "Convolution" | |
| bottom: "inc4e/conv5_2" | |
| top: "inc4e/conv5_3" | |
| param { lr_mult: 0.1 decay_mult: 0.1 } | |
| param { lr_mult: 0.2 decay_mult: 0 } | |
| convolution_param { | |
| num_output: 32 kernel_size: 3 pad: 1 | |
| weight_filler { type: "xavier" std: 0.1 } | |
| bias_filler { type: "constant" value: 0.1 } | |
| } | |
| } | |
| layer { | |
| name: "inc4e/conv5_3/bn" | |
| type: "BatchNorm" | |
| bottom: "inc4e/conv5_3" | |
| top: "inc4e/conv5_3" | |
| param { lr_mult: 0 decay_mult: 0 } | |
| param { lr_mult: 0 decay_mult: 0 } | |
| param { lr_mult: 0 decay_mult: 0 } | |
| batch_norm_param { use_global_stats: true } | |
| } | |
| layer { | |
| name: "inc4e/conv5_3/scale" | |
| type: "Scale" | |
| bottom: "inc4e/conv5_3" | |
| top: "inc4e/conv5_3" | |
| param { lr_mult: 0.1 decay_mult: 0 } | |
| param { lr_mult: 0.1 decay_mult: 0 } | |
| scale_param { bias_term: true } | |
| } | |
| layer { | |
| name: "inc4e/relu5_3" | |
| type: "ReLU" | |
| bottom: "inc4e/conv5_3" | |
| top: "inc4e/conv5_3" | |
| } | |
| layer { | |
| name: "inc4e" | |
| type: "Concat" | |
| bottom: "inc4e/conv1" | |
| bottom: "inc4e/conv3_2" | |
| bottom: "inc4e/conv5_3" | |
| top: "inc4e" | |
| } | |
| ################################################################################ | |
| ## hyper feature | |
| ################################################################################ | |
| layer { | |
| name: "downsample" | |
| type: "Pooling" | |
| bottom: "conv3" | |
| top: "downsample" | |
| pooling_param { | |
| kernel_size: 3 stride: 2 pad: 0 | |
| pool: MAX | |
| } | |
| } | |
| layer { | |
| name: "upsample" | |
| type: "Deconvolution" | |
| bottom: "inc4e" | |
| top: "upsample" | |
| param { lr_mult: 0 decay_mult: 0 } | |
| convolution_param { | |
| num_output: 256 | |
| kernel_size: 4 stride: 2 pad: 1 | |
| group: 256 | |
| weight_filler: { type: "bilinear" } | |
| bias_term: false | |
| } | |
| } | |
| layer { | |
| name: "concat" | |
| type: "Concat" | |
| bottom: "downsample" | |
| bottom: "inc3e" | |
| bottom: "upsample" | |
| top: "concat" | |
| concat_param { axis: 1 } | |
| } | |
| layer { | |
| name: "convf" | |
| type: "Convolution" | |
| bottom: "concat" | |
| top: "convf" | |
| param { lr_mult: 1 decay_mult: 1 } | |
| param { lr_mult: 2 decay_mult: 0 } | |
| convolution_param { | |
| num_output: 256 | |
| kernel_size: 1 stride: 1 pad: 0 | |
| weight_filler { type: "xavier" std: 0.1 } | |
| bias_filler { type: "constant" value: 0.1 } | |
| } | |
| } | |
| layer { | |
| name: "reluf" | |
| type: "ReLU" | |
| bottom: "convf" | |
| top: "convf" | |
| } | |
| ################################################################################ | |
| ## RPN | |
| ################################################################################ | |
| ### RPN ### | |
| layer { | |
| name: "rpn_conv1" | |
| type: "Convolution" | |
| bottom: "convf" | |
| top: "rpn_conv1" | |
| param { lr_mult: 1 decay_mult: 1 } | |
| param { lr_mult: 2 decay_mult: 0 } | |
| convolution_param { | |
| num_output: 256 | |
| kernel_size: 1 stride: 1 pad: 0 | |
| weight_filler { type: "gaussian" std: 0.01 } | |
| bias_filler { type: "constant" value: 0 } | |
| } | |
| } | |
| layer { | |
| name: "rpn_relu1" | |
| type: "ReLU" | |
| bottom: "rpn_conv1" | |
| top: "rpn_conv1" | |
| } | |
| layer { | |
| name: "rpn_cls_score" | |
| type: "Convolution" | |
| bottom: "rpn_conv1" | |
| top: "rpn_cls_score" | |
| param { lr_mult: 1 decay_mult: 1 } | |
| param { lr_mult: 2 decay_mult: 0 } | |
| convolution_param { | |
| num_output: 50 | |
| kernel_size: 1 stride: 1 pad: 0 | |
| weight_filler { type: "gaussian" std: 0.01 } | |
| bias_filler { type: "constant" value: 0 } | |
| } | |
| } | |
| layer { | |
| name: "rpn_bbox_pred" | |
| type: "Convolution" | |
| bottom: "rpn_conv1" | |
| top: "rpn_bbox_pred" | |
| param { lr_mult: 1 decay_mult: 1 } | |
| param { lr_mult: 2 decay_mult: 0 } | |
| convolution_param { | |
| num_output: 100 | |
| kernel_size: 1 stride: 1 pad: 0 | |
| weight_filler { type: "gaussian" std: 0.01 } | |
| bias_filler { type: "constant" value: 0 } | |
| } | |
| } | |
| layer { | |
| bottom: "rpn_cls_score" | |
| top: "rpn_cls_score_reshape" | |
| name: "rpn_cls_score_reshape" | |
| type: "Reshape" | |
| reshape_param { shape { dim: 0 dim: 2 dim: -1 dim: 0 } } | |
| } | |
| layer { | |
| name: 'rpn-data' | |
| type: 'Python' | |
| bottom: 'rpn_cls_score' | |
| bottom: 'gt_boxes' | |
| bottom: 'im_info' | |
| bottom: 'data' | |
| top: 'rpn_labels' | |
| top: 'rpn_bbox_targets' | |
| top: 'rpn_bbox_inside_weights' | |
| top: 'rpn_bbox_outside_weights' | |
| include { phase: TRAIN } | |
| python_param { | |
| module: 'rpn.anchor_target_layer' | |
| layer: 'AnchorTargetLayer' | |
| param_str: "{'feat_stride': 16, 'ratios': [0.5, 0.667, 1, 1.5, 2], 'scales': [3, 6, 9, 16, 32]}" | |
| } | |
| } | |
| layer { | |
| name: "rpn_loss_cls" | |
| type: "SoftmaxWithLoss" | |
| bottom: "rpn_cls_score_reshape" | |
| bottom: "rpn_labels" | |
| propagate_down: 1 | |
| propagate_down: 0 | |
| top: "rpn_loss_cls" | |
| include { phase: TRAIN } | |
| loss_weight: 1 | |
| loss_param { ignore_label: -1 normalize: true } | |
| } | |
| layer { | |
| name: "rpn_loss_bbox" | |
| type: "SmoothL1Loss" | |
| bottom: "rpn_bbox_pred" | |
| bottom: "rpn_bbox_targets" | |
| bottom: "rpn_bbox_inside_weights" | |
| bottom: "rpn_bbox_outside_weights" | |
| top: "rpn_loss_bbox" | |
| include { phase: TRAIN } | |
| loss_weight: 1 | |
| smooth_l1_loss_param { sigma: 3.0 } | |
| } | |
| ################################################################################ | |
| ## Proposal | |
| ################################################################################ | |
| layer { | |
| name: "rpn_cls_prob" | |
| type: "Softmax" | |
| bottom: "rpn_cls_score_reshape" | |
| top: "rpn_cls_prob" | |
| } | |
| layer { | |
| name: 'rpn_cls_prob_reshape' | |
| type: 'Reshape' | |
| bottom: 'rpn_cls_prob' | |
| top: 'rpn_cls_prob_reshape' | |
| reshape_param { shape { dim: 0 dim: 50 dim: -1 dim: 0 } } | |
| } | |
| layer { | |
| name: 'proposal' | |
| type: 'Python' | |
| bottom: 'rpn_cls_prob_reshape' | |
| bottom: 'rpn_bbox_pred' | |
| bottom: 'im_info' | |
| bottom: 'gt_boxes' | |
| top: 'rois' | |
| top: 'labels' | |
| top: 'bbox_targets' | |
| top: 'bbox_inside_weights' | |
| top: 'bbox_outside_weights' | |
| include { phase: TRAIN } | |
| python_param { | |
| module: 'rpn.proposal_layer' | |
| layer: 'ProposalLayer2' | |
| param_str: "{'feat_stride': 16, 'num_classes': 21, 'ratios': [0.5, 0.667, 1, 1.5, 2], 'scales': [3, 6, 9, 16, 32]}" | |
| } | |
| } | |
| layer { | |
| name: 'proposal' | |
| type: 'Proposal' | |
| bottom: 'rpn_cls_prob_reshape' | |
| bottom: 'rpn_bbox_pred' | |
| bottom: 'im_info' | |
| top: 'rois' | |
| top: 'scores' | |
| include { phase: TEST } | |
| proposal_param { | |
| ratio: 0.5 ratio: 0.667 ratio: 1.0 ratio: 1.5 ratio: 2.0 | |
| scale: 3 scale: 6 scale: 9 scale: 16 scale: 32 | |
| base_size: 16 | |
| feat_stride: 16 | |
| pre_nms_topn: 6000 | |
| post_nms_topn: 200 | |
| nms_thresh: 0.7 | |
| min_size: 16 | |
| } | |
| } | |
| ################################################################################ | |
| ## RCNN | |
| ################################################################################ | |
| layer { | |
| name: "roi_pool_conv5" | |
| type: "ROIPooling" | |
| bottom: "convf" | |
| bottom: "rois" | |
| top: "roi_pool_conv5" | |
| roi_pooling_param { | |
| pooled_w: 6 pooled_h: 6 | |
| spatial_scale: 0.0625 # 1/16 | |
| } | |
| } | |
| layer { | |
| name: "fc6_L" | |
| type: "InnerProduct" | |
| bottom: "roi_pool_conv5" | |
| top: "fc6_L" | |
| param { lr_mult: 1 decay_mult: 1 } | |
| param { lr_mult: 2 decay_mult: 0 } | |
| inner_product_param { | |
| num_output: 512 | |
| weight_filler { type: "xavier" std: 0.005 } | |
| bias_filler { type: "constant" value: 0.1 } | |
| } | |
| } | |
| layer { | |
| name: "fc6_U" | |
| type: "InnerProduct" | |
| bottom: "fc6_L" | |
| top: "fc6_U" | |
| param { lr_mult: 1 decay_mult: 1 } | |
| param { lr_mult: 2 decay_mult: 0 } | |
| inner_product_param { | |
| num_output: 4096 | |
| weight_filler { type: "xavier" std: 0.005 } | |
| bias_filler { type: "constant" value: 0.1 } | |
| } | |
| } | |
| layer { | |
| name: "relu6" | |
| type: "ReLU" | |
| bottom: "fc6_U" | |
| top: "fc6_U" | |
| } | |
| ################################################################################ | |
| ## fc 7 | |
| ################################################################################ | |
| layer { | |
| name: "fc7_L" | |
| type: "InnerProduct" | |
| bottom: "fc6_U" | |
| top: "fc7_L" | |
| param { lr_mult: 1 decay_mult: 1 } | |
| param { lr_mult: 2 decay_mult: 0 } | |
| inner_product_param { | |
| num_output: 128 | |
| weight_filler { type: "xavier" std: 0.005 } | |
| bias_filler { type: "constant" value: 0.1 } | |
| } | |
| } | |
| layer { | |
| name: "fc7_U" | |
| type: "InnerProduct" | |
| bottom: "fc7_L" | |
| top: "fc7_U" | |
| param { lr_mult: 1 decay_mult: 1 } | |
| param { lr_mult: 2 decay_mult: 0 } | |
| inner_product_param { | |
| num_output: 4096 | |
| weight_filler { type: "xavier" std: 0.005 } | |
| bias_filler { type: "constant" value: 0.1 } | |
| } | |
| } | |
| layer { | |
| name: "relu7" | |
| type: "ReLU" | |
| bottom: "fc7_U" | |
| top: "fc7_U" | |
| } | |
| ################################################################################ | |
| ## output | |
| ################################################################################ | |
| layer { | |
| name: "cls_score" | |
| type: "InnerProduct" | |
| bottom: "fc7_U" | |
| top: "cls_score" | |
| param { lr_mult: 1 decay_mult: 1 } | |
| param { lr_mult: 2 decay_mult: 0 } | |
| inner_product_param { | |
| num_output: 21 | |
| weight_filler { type: "gaussian" std: 0.01 } | |
| bias_filler { type: "constant" value: 0 } | |
| } | |
| } | |
| layer { | |
| name: "bbox_pred" | |
| type: "InnerProduct" | |
| bottom: "fc7_U" | |
| top: "bbox_pred" | |
| param { lr_mult: 1 decay_mult: 1 } | |
| param { lr_mult: 2 decay_mult: 0 } | |
| inner_product_param { | |
| num_output: 84 | |
| weight_filler { type: "gaussian" std: 0.001 } | |
| bias_filler { type: "constant" value: 0 } | |
| } | |
| } | |
| layer { | |
| name: "loss_cls" | |
| type: "SoftmaxWithLoss" | |
| bottom: "cls_score" | |
| bottom: "labels" | |
| propagate_down: 1 | |
| propagate_down: 0 | |
| top: "loss_cls" | |
| include { phase: TRAIN } | |
| loss_weight: 1 | |
| loss_param { ignore_label: -1 normalize: true } | |
| } | |
| layer { | |
| name: "loss_bbox" | |
| type: "SmoothL1Loss" | |
| bottom: "bbox_pred" | |
| bottom: "bbox_targets" | |
| bottom: "bbox_inside_weights" | |
| bottom: "bbox_outside_weights" | |
| top: "loss_bbox" | |
| include { phase: TRAIN } | |
| loss_weight: 1 | |
| } | |
| layer { | |
| name: "cls_prob" | |
| type: "Softmax" | |
| bottom: "cls_score" | |
| top: "cls_prob" | |
| include { phase: TEST } | |
| loss_param { | |
| ignore_label: -1 | |
| normalize: true | |
| } | |
| } | 
  
    Sign up for free
    to join this conversation on GitHub.
    Already have an account?
    Sign in to comment