Created
December 6, 2016 10:25
-
-
Save bmount/e5691fd6c1306715374dc91a587d3227 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
layer { | |
name: "Data1" | |
type: "Data" | |
top: "Data1" | |
top: "Data2" | |
transform_param { | |
mean_file: "/home/zl499/caffe/examples/cifar10/mean.binaryproto" | |
} | |
data_param { | |
source: "/home/zl499/caffe/examples/cifar10/cifar10_train_lmdb" | |
batch_size: 64 | |
backend: LMDB | |
} | |
} | |
layer { | |
name: "Convolution1" | |
type: "Convolution" | |
bottom: "Data1" | |
top: "Convolution1" | |
convolution_param { | |
num_output: 16 | |
bias_term: false | |
pad: 1 | |
kernel_size: 3 | |
stride: 1 | |
weight_filler { | |
type: "msra" | |
} | |
bias_filler { | |
type: "constant" | |
} | |
} | |
} | |
layer { | |
name: "BatchNorm1" | |
type: "BatchNorm" | |
bottom: "Convolution1" | |
top: "BatchNorm1" | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
} | |
layer { | |
name: "Scale1" | |
type: "Scale" | |
bottom: "BatchNorm1" | |
top: "BatchNorm1" | |
scale_param { | |
filler { | |
value: 1 | |
} | |
bias_term: true | |
bias_filler { | |
value: 0 | |
} | |
} | |
} | |
layer { | |
name: "ReLU1" | |
type: "ReLU" | |
bottom: "BatchNorm1" | |
top: "BatchNorm1" | |
} | |
layer { | |
name: "Convolution2" | |
type: "Convolution" | |
bottom: "BatchNorm1" | |
top: "Convolution2" | |
convolution_param { | |
num_output: 12 | |
bias_term: false | |
pad: 1 | |
kernel_size: 3 | |
stride: 1 | |
weight_filler { | |
type: "msra" | |
} | |
bias_filler { | |
type: "constant" | |
} | |
} | |
} | |
layer { | |
name: "Dropout1" | |
type: "Dropout" | |
bottom: "Convolution2" | |
top: "Dropout1" | |
dropout_param { | |
dropout_ratio: 0.2 | |
} | |
} | |
layer { | |
name: "Concat1" | |
type: "Concat" | |
bottom: "Convolution1" | |
bottom: "Dropout1" | |
top: "Concat1" | |
concat_param { | |
axis: 1 | |
} | |
} | |
layer { | |
name: "BatchNorm2" | |
type: "BatchNorm" | |
bottom: "Concat1" | |
top: "BatchNorm2" | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
} | |
layer { | |
name: "Scale2" | |
type: "Scale" | |
bottom: "BatchNorm2" | |
top: "BatchNorm2" | |
scale_param { | |
filler { | |
value: 1 | |
} | |
bias_term: true | |
bias_filler { | |
value: 0 | |
} | |
} | |
} | |
layer { | |
name: "ReLU2" | |
type: "ReLU" | |
bottom: "BatchNorm2" | |
top: "BatchNorm2" | |
} | |
layer { | |
name: "Convolution3" | |
type: "Convolution" | |
bottom: "BatchNorm2" | |
top: "Convolution3" | |
convolution_param { | |
num_output: 12 | |
bias_term: false | |
pad: 1 | |
kernel_size: 3 | |
stride: 1 | |
weight_filler { | |
type: "msra" | |
} | |
bias_filler { | |
type: "constant" | |
} | |
} | |
} | |
layer { | |
name: "Dropout2" | |
type: "Dropout" | |
bottom: "Convolution3" | |
top: "Dropout2" | |
dropout_param { | |
dropout_ratio: 0.2 | |
} | |
} | |
layer { | |
name: "Concat2" | |
type: "Concat" | |
bottom: "Concat1" | |
bottom: "Dropout2" | |
top: "Concat2" | |
concat_param { | |
axis: 1 | |
} | |
} | |
layer { | |
name: "BatchNorm3" | |
type: "BatchNorm" | |
bottom: "Concat2" | |
top: "BatchNorm3" | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
} | |
layer { | |
name: "Scale3" | |
type: "Scale" | |
bottom: "BatchNorm3" | |
top: "BatchNorm3" | |
scale_param { | |
filler { | |
value: 1 | |
} | |
bias_term: true | |
bias_filler { | |
value: 0 | |
} | |
} | |
} | |
layer { | |
name: "ReLU3" | |
type: "ReLU" | |
bottom: "BatchNorm3" | |
top: "BatchNorm3" | |
} | |
layer { | |
name: "Convolution4" | |
type: "Convolution" | |
bottom: "BatchNorm3" | |
top: "Convolution4" | |
convolution_param { | |
num_output: 12 | |
bias_term: false | |
pad: 1 | |
kernel_size: 3 | |
stride: 1 | |
weight_filler { | |
type: "msra" | |
} | |
bias_filler { | |
type: "constant" | |
} | |
} | |
} | |
layer { | |
name: "Dropout3" | |
type: "Dropout" | |
bottom: "Convolution4" | |
top: "Dropout3" | |
dropout_param { | |
dropout_ratio: 0.2 | |
} | |
} | |
layer { | |
name: "Concat3" | |
type: "Concat" | |
bottom: "Concat2" | |
bottom: "Dropout3" | |
top: "Concat3" | |
concat_param { | |
axis: 1 | |
} | |
} | |
layer { | |
name: "BatchNorm4" | |
type: "BatchNorm" | |
bottom: "Concat3" | |
top: "BatchNorm4" | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
} | |
layer { | |
name: "Scale4" | |
type: "Scale" | |
bottom: "BatchNorm4" | |
top: "BatchNorm4" | |
scale_param { | |
filler { | |
value: 1 | |
} | |
bias_term: true | |
bias_filler { | |
value: 0 | |
} | |
} | |
} | |
layer { | |
name: "ReLU4" | |
type: "ReLU" | |
bottom: "BatchNorm4" | |
top: "BatchNorm4" | |
} | |
layer { | |
name: "Convolution5" | |
type: "Convolution" | |
bottom: "BatchNorm4" | |
top: "Convolution5" | |
convolution_param { | |
num_output: 12 | |
bias_term: false | |
pad: 1 | |
kernel_size: 3 | |
stride: 1 | |
weight_filler { | |
type: "msra" | |
} | |
bias_filler { | |
type: "constant" | |
} | |
} | |
} | |
layer { | |
name: "Dropout4" | |
type: "Dropout" | |
bottom: "Convolution5" | |
top: "Dropout4" | |
dropout_param { | |
dropout_ratio: 0.2 | |
} | |
} | |
layer { | |
name: "Concat4" | |
type: "Concat" | |
bottom: "Concat3" | |
bottom: "Dropout4" | |
top: "Concat4" | |
concat_param { | |
axis: 1 | |
} | |
} | |
layer { | |
name: "BatchNorm5" | |
type: "BatchNorm" | |
bottom: "Concat4" | |
top: "BatchNorm5" | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
} | |
layer { | |
name: "Scale5" | |
type: "Scale" | |
bottom: "BatchNorm5" | |
top: "BatchNorm5" | |
scale_param { | |
filler { | |
value: 1 | |
} | |
bias_term: true | |
bias_filler { | |
value: 0 | |
} | |
} | |
} | |
layer { | |
name: "ReLU5" | |
type: "ReLU" | |
bottom: "BatchNorm5" | |
top: "BatchNorm5" | |
} | |
layer { | |
name: "Convolution6" | |
type: "Convolution" | |
bottom: "BatchNorm5" | |
top: "Convolution6" | |
convolution_param { | |
num_output: 12 | |
bias_term: false | |
pad: 1 | |
kernel_size: 3 | |
stride: 1 | |
weight_filler { | |
type: "msra" | |
} | |
bias_filler { | |
type: "constant" | |
} | |
} | |
} | |
layer { | |
name: "Dropout5" | |
type: "Dropout" | |
bottom: "Convolution6" | |
top: "Dropout5" | |
dropout_param { | |
dropout_ratio: 0.2 | |
} | |
} | |
layer { | |
name: "Concat5" | |
type: "Concat" | |
bottom: "Concat4" | |
bottom: "Dropout5" | |
top: "Concat5" | |
concat_param { | |
axis: 1 | |
} | |
} | |
layer { | |
name: "BatchNorm6" | |
type: "BatchNorm" | |
bottom: "Concat5" | |
top: "BatchNorm6" | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
} | |
layer { | |
name: "Scale6" | |
type: "Scale" | |
bottom: "BatchNorm6" | |
top: "BatchNorm6" | |
scale_param { | |
filler { | |
value: 1 | |
} | |
bias_term: true | |
bias_filler { | |
value: 0 | |
} | |
} | |
} | |
layer { | |
name: "ReLU6" | |
type: "ReLU" | |
bottom: "BatchNorm6" | |
top: "BatchNorm6" | |
} | |
layer { | |
name: "Convolution7" | |
type: "Convolution" | |
bottom: "BatchNorm6" | |
top: "Convolution7" | |
convolution_param { | |
num_output: 12 | |
bias_term: false | |
pad: 1 | |
kernel_size: 3 | |
stride: 1 | |
weight_filler { | |
type: "msra" | |
} | |
bias_filler { | |
type: "constant" | |
} | |
} | |
} | |
layer { | |
name: "Dropout6" | |
type: "Dropout" | |
bottom: "Convolution7" | |
top: "Dropout6" | |
dropout_param { | |
dropout_ratio: 0.2 | |
} | |
} | |
layer { | |
name: "Concat6" | |
type: "Concat" | |
bottom: "Concat5" | |
bottom: "Dropout6" | |
top: "Concat6" | |
concat_param { | |
axis: 1 | |
} | |
} | |
layer { | |
name: "BatchNorm7" | |
type: "BatchNorm" | |
bottom: "Concat6" | |
top: "BatchNorm7" | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
} | |
layer { | |
name: "Scale7" | |
type: "Scale" | |
bottom: "BatchNorm7" | |
top: "BatchNorm7" | |
scale_param { | |
filler { | |
value: 1 | |
} | |
bias_term: true | |
bias_filler { | |
value: 0 | |
} | |
} | |
} | |
layer { | |
name: "ReLU7" | |
type: "ReLU" | |
bottom: "BatchNorm7" | |
top: "BatchNorm7" | |
} | |
layer { | |
name: "Convolution8" | |
type: "Convolution" | |
bottom: "BatchNorm7" | |
top: "Convolution8" | |
convolution_param { | |
num_output: 12 | |
bias_term: false | |
pad: 1 | |
kernel_size: 3 | |
stride: 1 | |
weight_filler { | |
type: "msra" | |
} | |
bias_filler { | |
type: "constant" | |
} | |
} | |
} | |
layer { | |
name: "Dropout7" | |
type: "Dropout" | |
bottom: "Convolution8" | |
top: "Dropout7" | |
dropout_param { | |
dropout_ratio: 0.2 | |
} | |
} | |
layer { | |
name: "Concat7" | |
type: "Concat" | |
bottom: "Concat6" | |
bottom: "Dropout7" | |
top: "Concat7" | |
concat_param { | |
axis: 1 | |
} | |
} | |
layer { | |
name: "BatchNorm8" | |
type: "BatchNorm" | |
bottom: "Concat7" | |
top: "BatchNorm8" | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
} | |
layer { | |
name: "Scale8" | |
type: "Scale" | |
bottom: "BatchNorm8" | |
top: "BatchNorm8" | |
scale_param { | |
filler { | |
value: 1 | |
} | |
bias_term: true | |
bias_filler { | |
value: 0 | |
} | |
} | |
} | |
layer { | |
name: "ReLU8" | |
type: "ReLU" | |
bottom: "BatchNorm8" | |
top: "BatchNorm8" | |
} | |
layer { | |
name: "Convolution9" | |
type: "Convolution" | |
bottom: "BatchNorm8" | |
top: "Convolution9" | |
convolution_param { | |
num_output: 12 | |
bias_term: false | |
pad: 1 | |
kernel_size: 3 | |
stride: 1 | |
weight_filler { | |
type: "msra" | |
} | |
bias_filler { | |
type: "constant" | |
} | |
} | |
} | |
layer { | |
name: "Dropout8" | |
type: "Dropout" | |
bottom: "Convolution9" | |
top: "Dropout8" | |
dropout_param { | |
dropout_ratio: 0.2 | |
} | |
} | |
layer { | |
name: "Concat8" | |
type: "Concat" | |
bottom: "Concat7" | |
bottom: "Dropout8" | |
top: "Concat8" | |
concat_param { | |
axis: 1 | |
} | |
} | |
layer { | |
name: "BatchNorm9" | |
type: "BatchNorm" | |
bottom: "Concat8" | |
top: "BatchNorm9" | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
} | |
layer { | |
name: "Scale9" | |
type: "Scale" | |
bottom: "BatchNorm9" | |
top: "BatchNorm9" | |
scale_param { | |
filler { | |
value: 1 | |
} | |
bias_term: true | |
bias_filler { | |
value: 0 | |
} | |
} | |
} | |
layer { | |
name: "ReLU9" | |
type: "ReLU" | |
bottom: "BatchNorm9" | |
top: "BatchNorm9" | |
} | |
layer { | |
name: "Convolution10" | |
type: "Convolution" | |
bottom: "BatchNorm9" | |
top: "Convolution10" | |
convolution_param { | |
num_output: 12 | |
bias_term: false | |
pad: 1 | |
kernel_size: 3 | |
stride: 1 | |
weight_filler { | |
type: "msra" | |
} | |
bias_filler { | |
type: "constant" | |
} | |
} | |
} | |
layer { | |
name: "Dropout9" | |
type: "Dropout" | |
bottom: "Convolution10" | |
top: "Dropout9" | |
dropout_param { | |
dropout_ratio: 0.2 | |
} | |
} | |
layer { | |
name: "Concat9" | |
type: "Concat" | |
bottom: "Concat8" | |
bottom: "Dropout9" | |
top: "Concat9" | |
concat_param { | |
axis: 1 | |
} | |
} | |
layer { | |
name: "BatchNorm10" | |
type: "BatchNorm" | |
bottom: "Concat9" | |
top: "BatchNorm10" | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
} | |
layer { | |
name: "Scale10" | |
type: "Scale" | |
bottom: "BatchNorm10" | |
top: "BatchNorm10" | |
scale_param { | |
filler { | |
value: 1 | |
} | |
bias_term: true | |
bias_filler { | |
value: 0 | |
} | |
} | |
} | |
layer { | |
name: "ReLU10" | |
type: "ReLU" | |
bottom: "BatchNorm10" | |
top: "BatchNorm10" | |
} | |
layer { | |
name: "Convolution11" | |
type: "Convolution" | |
bottom: "BatchNorm10" | |
top: "Convolution11" | |
convolution_param { | |
num_output: 12 | |
bias_term: false | |
pad: 1 | |
kernel_size: 3 | |
stride: 1 | |
weight_filler { | |
type: "msra" | |
} | |
bias_filler { | |
type: "constant" | |
} | |
} | |
} | |
layer { | |
name: "Dropout10" | |
type: "Dropout" | |
bottom: "Convolution11" | |
top: "Dropout10" | |
dropout_param { | |
dropout_ratio: 0.2 | |
} | |
} | |
layer { | |
name: "Concat10" | |
type: "Concat" | |
bottom: "Concat9" | |
bottom: "Dropout10" | |
top: "Concat10" | |
concat_param { | |
axis: 1 | |
} | |
} | |
layer { | |
name: "BatchNorm11" | |
type: "BatchNorm" | |
bottom: "Concat10" | |
top: "BatchNorm11" | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
} | |
layer { | |
name: "Scale11" | |
type: "Scale" | |
bottom: "BatchNorm11" | |
top: "BatchNorm11" | |
scale_param { | |
filler { | |
value: 1 | |
} | |
bias_term: true | |
bias_filler { | |
value: 0 | |
} | |
} | |
} | |
layer { | |
name: "ReLU11" | |
type: "ReLU" | |
bottom: "BatchNorm11" | |
top: "BatchNorm11" | |
} | |
layer { | |
name: "Convolution12" | |
type: "Convolution" | |
bottom: "BatchNorm11" | |
top: "Convolution12" | |
convolution_param { | |
num_output: 12 | |
bias_term: false | |
pad: 1 | |
kernel_size: 3 | |
stride: 1 | |
weight_filler { | |
type: "msra" | |
} | |
bias_filler { | |
type: "constant" | |
} | |
} | |
} | |
layer { | |
name: "Dropout11" | |
type: "Dropout" | |
bottom: "Convolution12" | |
top: "Dropout11" | |
dropout_param { | |
dropout_ratio: 0.2 | |
} | |
} | |
layer { | |
name: "Concat11" | |
type: "Concat" | |
bottom: "Concat10" | |
bottom: "Dropout11" | |
top: "Concat11" | |
concat_param { | |
axis: 1 | |
} | |
} | |
layer { | |
name: "BatchNorm12" | |
type: "BatchNorm" | |
bottom: "Concat11" | |
top: "BatchNorm12" | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
} | |
layer { | |
name: "Scale12" | |
type: "Scale" | |
bottom: "BatchNorm12" | |
top: "BatchNorm12" | |
scale_param { | |
filler { | |
value: 1 | |
} | |
bias_term: true | |
bias_filler { | |
value: 0 | |
} | |
} | |
} | |
layer { | |
name: "ReLU12" | |
type: "ReLU" | |
bottom: "BatchNorm12" | |
top: "BatchNorm12" | |
} | |
layer { | |
name: "Convolution13" | |
type: "Convolution" | |
bottom: "BatchNorm12" | |
top: "Convolution13" | |
convolution_param { | |
num_output: 12 | |
bias_term: false | |
pad: 1 | |
kernel_size: 3 | |
stride: 1 | |
weight_filler { | |
type: "msra" | |
} | |
bias_filler { | |
type: "constant" | |
} | |
} | |
} | |
layer { | |
name: "Dropout12" | |
type: "Dropout" | |
bottom: "Convolution13" | |
top: "Dropout12" | |
dropout_param { | |
dropout_ratio: 0.2 | |
} | |
} | |
layer { | |
name: "Concat12" | |
type: "Concat" | |
bottom: "Concat11" | |
bottom: "Dropout12" | |
top: "Concat12" | |
concat_param { | |
axis: 1 | |
} | |
} | |
layer { | |
name: "BatchNorm13" | |
type: "BatchNorm" | |
bottom: "Concat12" | |
top: "BatchNorm13" | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
} | |
layer { | |
name: "Scale13" | |
type: "Scale" | |
bottom: "BatchNorm13" | |
top: "BatchNorm13" | |
scale_param { | |
filler { | |
value: 1 | |
} | |
bias_term: true | |
bias_filler { | |
value: 0 | |
} | |
} | |
} | |
layer { | |
name: "ReLU13" | |
type: "ReLU" | |
bottom: "BatchNorm13" | |
top: "BatchNorm13" | |
} | |
layer { | |
name: "Convolution14" | |
type: "Convolution" | |
bottom: "BatchNorm13" | |
top: "Convolution14" | |
convolution_param { | |
num_output: 160 | |
bias_term: false | |
pad: 0 | |
kernel_size: 1 | |
stride: 1 | |
weight_filler { | |
type: "msra" | |
} | |
bias_filler { | |
type: "constant" | |
} | |
} | |
} | |
layer { | |
name: "Dropout13" | |
type: "Dropout" | |
bottom: "Convolution14" | |
top: "Dropout13" | |
dropout_param { | |
dropout_ratio: 0.2 | |
} | |
} | |
layer { | |
name: "Pooling1" | |
type: "Pooling" | |
bottom: "Dropout13" | |
top: "Pooling1" | |
pooling_param { | |
pool: AVE | |
kernel_size: 2 | |
stride: 2 | |
} | |
} | |
layer { | |
name: "BatchNorm14" | |
type: "BatchNorm" | |
bottom: "Pooling1" | |
top: "BatchNorm14" | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
} | |
layer { | |
name: "Scale14" | |
type: "Scale" | |
bottom: "BatchNorm14" | |
top: "BatchNorm14" | |
scale_param { | |
filler { | |
value: 1 | |
} | |
bias_term: true | |
bias_filler { | |
value: 0 | |
} | |
} | |
} | |
layer { | |
name: "ReLU14" | |
type: "ReLU" | |
bottom: "BatchNorm14" | |
top: "BatchNorm14" | |
} | |
layer { | |
name: "Convolution15" | |
type: "Convolution" | |
bottom: "BatchNorm14" | |
top: "Convolution15" | |
convolution_param { | |
num_output: 12 | |
bias_term: false | |
pad: 1 | |
kernel_size: 3 | |
stride: 1 | |
weight_filler { | |
type: "msra" | |
} | |
bias_filler { | |
type: "constant" | |
} | |
} | |
} | |
layer { | |
name: "Dropout14" | |
type: "Dropout" | |
bottom: "Convolution15" | |
top: "Dropout14" | |
dropout_param { | |
dropout_ratio: 0.2 | |
} | |
} | |
layer { | |
name: "Concat13" | |
type: "Concat" | |
bottom: "Pooling1" | |
bottom: "Dropout14" | |
top: "Concat13" | |
concat_param { | |
axis: 1 | |
} | |
} | |
layer { | |
name: "BatchNorm15" | |
type: "BatchNorm" | |
bottom: "Concat13" | |
top: "BatchNorm15" | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
} | |
layer { | |
name: "Scale15" | |
type: "Scale" | |
bottom: "BatchNorm15" | |
top: "BatchNorm15" | |
scale_param { | |
filler { | |
value: 1 | |
} | |
bias_term: true | |
bias_filler { | |
value: 0 | |
} | |
} | |
} | |
layer { | |
name: "ReLU15" | |
type: "ReLU" | |
bottom: "BatchNorm15" | |
top: "BatchNorm15" | |
} | |
layer { | |
name: "Convolution16" | |
type: "Convolution" | |
bottom: "BatchNorm15" | |
top: "Convolution16" | |
convolution_param { | |
num_output: 12 | |
bias_term: false | |
pad: 1 | |
kernel_size: 3 | |
stride: 1 | |
weight_filler { | |
type: "msra" | |
} | |
bias_filler { | |
type: "constant" | |
} | |
} | |
} | |
layer { | |
name: "Dropout15" | |
type: "Dropout" | |
bottom: "Convolution16" | |
top: "Dropout15" | |
dropout_param { | |
dropout_ratio: 0.2 | |
} | |
} | |
layer { | |
name: "Concat14" | |
type: "Concat" | |
bottom: "Concat13" | |
bottom: "Dropout15" | |
top: "Concat14" | |
concat_param { | |
axis: 1 | |
} | |
} | |
layer { | |
name: "BatchNorm16" | |
type: "BatchNorm" | |
bottom: "Concat14" | |
top: "BatchNorm16" | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
} | |
layer { | |
name: "Scale16" | |
type: "Scale" | |
bottom: "BatchNorm16" | |
top: "BatchNorm16" | |
scale_param { | |
filler { | |
value: 1 | |
} | |
bias_term: true | |
bias_filler { | |
value: 0 | |
} | |
} | |
} | |
layer { | |
name: "ReLU16" | |
type: "ReLU" | |
bottom: "BatchNorm16" | |
top: "BatchNorm16" | |
} | |
layer { | |
name: "Convolution17" | |
type: "Convolution" | |
bottom: "BatchNorm16" | |
top: "Convolution17" | |
convolution_param { | |
num_output: 12 | |
bias_term: false | |
pad: 1 | |
kernel_size: 3 | |
stride: 1 | |
weight_filler { | |
type: "msra" | |
} | |
bias_filler { | |
type: "constant" | |
} | |
} | |
} | |
layer { | |
name: "Dropout16" | |
type: "Dropout" | |
bottom: "Convolution17" | |
top: "Dropout16" | |
dropout_param { | |
dropout_ratio: 0.2 | |
} | |
} | |
layer { | |
name: "Concat15" | |
type: "Concat" | |
bottom: "Concat14" | |
bottom: "Dropout16" | |
top: "Concat15" | |
concat_param { | |
axis: 1 | |
} | |
} | |
layer { | |
name: "BatchNorm17" | |
type: "BatchNorm" | |
bottom: "Concat15" | |
top: "BatchNorm17" | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
} | |
layer { | |
name: "Scale17" | |
type: "Scale" | |
bottom: "BatchNorm17" | |
top: "BatchNorm17" | |
scale_param { | |
filler { | |
value: 1 | |
} | |
bias_term: true | |
bias_filler { | |
value: 0 | |
} | |
} | |
} | |
layer { | |
name: "ReLU17" | |
type: "ReLU" | |
bottom: "BatchNorm17" | |
top: "BatchNorm17" | |
} | |
layer { | |
name: "Convolution18" | |
type: "Convolution" | |
bottom: "BatchNorm17" | |
top: "Convolution18" | |
convolution_param { | |
num_output: 12 | |
bias_term: false | |
pad: 1 | |
kernel_size: 3 | |
stride: 1 | |
weight_filler { | |
type: "msra" | |
} | |
bias_filler { | |
type: "constant" | |
} | |
} | |
} | |
layer { | |
name: "Dropout17" | |
type: "Dropout" | |
bottom: "Convolution18" | |
top: "Dropout17" | |
dropout_param { | |
dropout_ratio: 0.2 | |
} | |
} | |
layer { | |
name: "Concat16" | |
type: "Concat" | |
bottom: "Concat15" | |
bottom: "Dropout17" | |
top: "Concat16" | |
concat_param { | |
axis: 1 | |
} | |
} | |
layer { | |
name: "BatchNorm18" | |
type: "BatchNorm" | |
bottom: "Concat16" | |
top: "BatchNorm18" | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
} | |
layer { | |
name: "Scale18" | |
type: "Scale" | |
bottom: "BatchNorm18" | |
top: "BatchNorm18" | |
scale_param { | |
filler { | |
value: 1 | |
} | |
bias_term: true | |
bias_filler { | |
value: 0 | |
} | |
} | |
} | |
layer { | |
name: "ReLU18" | |
type: "ReLU" | |
bottom: "BatchNorm18" | |
top: "BatchNorm18" | |
} | |
layer { | |
name: "Convolution19" | |
type: "Convolution" | |
bottom: "BatchNorm18" | |
top: "Convolution19" | |
convolution_param { | |
num_output: 12 | |
bias_term: false | |
pad: 1 | |
kernel_size: 3 | |
stride: 1 | |
weight_filler { | |
type: "msra" | |
} | |
bias_filler { | |
type: "constant" | |
} | |
} | |
} | |
layer { | |
name: "Dropout18" | |
type: "Dropout" | |
bottom: "Convolution19" | |
top: "Dropout18" | |
dropout_param { | |
dropout_ratio: 0.2 | |
} | |
} | |
layer { | |
name: "Concat17" | |
type: "Concat" | |
bottom: "Concat16" | |
bottom: "Dropout18" | |
top: "Concat17" | |
concat_param { | |
axis: 1 | |
} | |
} | |
layer { | |
name: "BatchNorm19" | |
type: "BatchNorm" | |
bottom: "Concat17" | |
top: "BatchNorm19" | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
} | |
layer { | |
name: "Scale19" | |
type: "Scale" | |
bottom: "BatchNorm19" | |
top: "BatchNorm19" | |
scale_param { | |
filler { | |
value: 1 | |
} | |
bias_term: true | |
bias_filler { | |
value: 0 | |
} | |
} | |
} | |
layer { | |
name: "ReLU19" | |
type: "ReLU" | |
bottom: "BatchNorm19" | |
top: "BatchNorm19" | |
} | |
layer { | |
name: "Convolution20" | |
type: "Convolution" | |
bottom: "BatchNorm19" | |
top: "Convolution20" | |
convolution_param { | |
num_output: 12 | |
bias_term: false | |
pad: 1 | |
kernel_size: 3 | |
stride: 1 | |
weight_filler { | |
type: "msra" | |
} | |
bias_filler { | |
type: "constant" | |
} | |
} | |
} | |
layer { | |
name: "Dropout19" | |
type: "Dropout" | |
bottom: "Convolution20" | |
top: "Dropout19" | |
dropout_param { | |
dropout_ratio: 0.2 | |
} | |
} | |
layer { | |
name: "Concat18" | |
type: "Concat" | |
bottom: "Concat17" | |
bottom: "Dropout19" | |
top: "Concat18" | |
concat_param { | |
axis: 1 | |
} | |
} | |
layer { | |
name: "BatchNorm20" | |
type: "BatchNorm" | |
bottom: "Concat18" | |
top: "BatchNorm20" | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
} | |
layer { | |
name: "Scale20" | |
type: "Scale" | |
bottom: "BatchNorm20" | |
top: "BatchNorm20" | |
scale_param { | |
filler { | |
value: 1 | |
} | |
bias_term: true | |
bias_filler { | |
value: 0 | |
} | |
} | |
} | |
layer { | |
name: "ReLU20" | |
type: "ReLU" | |
bottom: "BatchNorm20" | |
top: "BatchNorm20" | |
} | |
layer { | |
name: "Convolution21" | |
type: "Convolution" | |
bottom: "BatchNorm20" | |
top: "Convolution21" | |
convolution_param { | |
num_output: 12 | |
bias_term: false | |
pad: 1 | |
kernel_size: 3 | |
stride: 1 | |
weight_filler { | |
type: "msra" | |
} | |
bias_filler { | |
type: "constant" | |
} | |
} | |
} | |
layer { | |
name: "Dropout20" | |
type: "Dropout" | |
bottom: "Convolution21" | |
top: "Dropout20" | |
dropout_param { | |
dropout_ratio: 0.2 | |
} | |
} | |
layer { | |
name: "Concat19" | |
type: "Concat" | |
bottom: "Concat18" | |
bottom: "Dropout20" | |
top: "Concat19" | |
concat_param { | |
axis: 1 | |
} | |
} | |
layer { | |
name: "BatchNorm21" | |
type: "BatchNorm" | |
bottom: "Concat19" | |
top: "BatchNorm21" | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
} | |
layer { | |
name: "Scale21" | |
type: "Scale" | |
bottom: "BatchNorm21" | |
top: "BatchNorm21" | |
scale_param { | |
filler { | |
value: 1 | |
} | |
bias_term: true | |
bias_filler { | |
value: 0 | |
} | |
} | |
} | |
layer { | |
name: "ReLU21" | |
type: "ReLU" | |
bottom: "BatchNorm21" | |
top: "BatchNorm21" | |
} | |
layer { | |
name: "Convolution22" | |
type: "Convolution" | |
bottom: "BatchNorm21" | |
top: "Convolution22" | |
convolution_param { | |
num_output: 12 | |
bias_term: false | |
pad: 1 | |
kernel_size: 3 | |
stride: 1 | |
weight_filler { | |
type: "msra" | |
} | |
bias_filler { | |
type: "constant" | |
} | |
} | |
} | |
layer { | |
name: "Dropout21" | |
type: "Dropout" | |
bottom: "Convolution22" | |
top: "Dropout21" | |
dropout_param { | |
dropout_ratio: 0.2 | |
} | |
} | |
layer { | |
name: "Concat20" | |
type: "Concat" | |
bottom: "Concat19" | |
bottom: "Dropout21" | |
top: "Concat20" | |
concat_param { | |
axis: 1 | |
} | |
} | |
layer { | |
name: "BatchNorm22" | |
type: "BatchNorm" | |
bottom: "Concat20" | |
top: "BatchNorm22" | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
} | |
layer { | |
name: "Scale22" | |
type: "Scale" | |
bottom: "BatchNorm22" | |
top: "BatchNorm22" | |
scale_param { | |
filler { | |
value: 1 | |
} | |
bias_term: true | |
bias_filler { | |
value: 0 | |
} | |
} | |
} | |
layer { | |
name: "ReLU22" | |
type: "ReLU" | |
bottom: "BatchNorm22" | |
top: "BatchNorm22" | |
} | |
layer { | |
name: "Convolution23" | |
type: "Convolution" | |
bottom: "BatchNorm22" | |
top: "Convolution23" | |
convolution_param { | |
num_output: 12 | |
bias_term: false | |
pad: 1 | |
kernel_size: 3 | |
stride: 1 | |
weight_filler { | |
type: "msra" | |
} | |
bias_filler { | |
type: "constant" | |
} | |
} | |
} | |
layer { | |
name: "Dropout22" | |
type: "Dropout" | |
bottom: "Convolution23" | |
top: "Dropout22" | |
dropout_param { | |
dropout_ratio: 0.2 | |
} | |
} | |
layer { | |
name: "Concat21" | |
type: "Concat" | |
bottom: "Concat20" | |
bottom: "Dropout22" | |
top: "Concat21" | |
concat_param { | |
axis: 1 | |
} | |
} | |
layer { | |
name: "BatchNorm23" | |
type: "BatchNorm" | |
bottom: "Concat21" | |
top: "BatchNorm23" | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
} | |
layer { | |
name: "Scale23" | |
type: "Scale" | |
bottom: "BatchNorm23" | |
top: "BatchNorm23" | |
scale_param { | |
filler { | |
value: 1 | |
} | |
bias_term: true | |
bias_filler { | |
value: 0 | |
} | |
} | |
} | |
layer { | |
name: "ReLU23" | |
type: "ReLU" | |
bottom: "BatchNorm23" | |
top: "BatchNorm23" | |
} | |
layer { | |
name: "Convolution24" | |
type: "Convolution" | |
bottom: "BatchNorm23" | |
top: "Convolution24" | |
convolution_param { | |
num_output: 12 | |
bias_term: false | |
pad: 1 | |
kernel_size: 3 | |
stride: 1 | |
weight_filler { | |
type: "msra" | |
} | |
bias_filler { | |
type: "constant" | |
} | |
} | |
} | |
layer { | |
name: "Dropout23" | |
type: "Dropout" | |
bottom: "Convolution24" | |
top: "Dropout23" | |
dropout_param { | |
dropout_ratio: 0.2 | |
} | |
} | |
layer { | |
name: "Concat22" | |
type: "Concat" | |
bottom: "Concat21" | |
bottom: "Dropout23" | |
top: "Concat22" | |
concat_param { | |
axis: 1 | |
} | |
} | |
layer { | |
name: "BatchNorm24" | |
type: "BatchNorm" | |
bottom: "Concat22" | |
top: "BatchNorm24" | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
} | |
layer { | |
name: "Scale24" | |
type: "Scale" | |
bottom: "BatchNorm24" | |
top: "BatchNorm24" | |
scale_param { | |
filler { | |
value: 1 | |
} | |
bias_term: true | |
bias_filler { | |
value: 0 | |
} | |
} | |
} | |
layer { | |
name: "ReLU24" | |
type: "ReLU" | |
bottom: "BatchNorm24" | |
top: "BatchNorm24" | |
} | |
layer { | |
name: "Convolution25" | |
type: "Convolution" | |
bottom: "BatchNorm24" | |
top: "Convolution25" | |
convolution_param { | |
num_output: 12 | |
bias_term: false | |
pad: 1 | |
kernel_size: 3 | |
stride: 1 | |
weight_filler { | |
type: "msra" | |
} | |
bias_filler { | |
type: "constant" | |
} | |
} | |
} | |
layer { | |
name: "Dropout24" | |
type: "Dropout" | |
bottom: "Convolution25" | |
top: "Dropout24" | |
dropout_param { | |
dropout_ratio: 0.2 | |
} | |
} | |
layer { | |
name: "Concat23" | |
type: "Concat" | |
bottom: "Concat22" | |
bottom: "Dropout24" | |
top: "Concat23" | |
concat_param { | |
axis: 1 | |
} | |
} | |
layer { | |
name: "BatchNorm25" | |
type: "BatchNorm" | |
bottom: "Concat23" | |
top: "BatchNorm25" | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
} | |
layer { | |
name: "Scale25" | |
type: "Scale" | |
bottom: "BatchNorm25" | |
top: "BatchNorm25" | |
scale_param { | |
filler { | |
value: 1 | |
} | |
bias_term: true | |
bias_filler { | |
value: 0 | |
} | |
} | |
} | |
layer { | |
name: "ReLU25" | |
type: "ReLU" | |
bottom: "BatchNorm25" | |
top: "BatchNorm25" | |
} | |
layer { | |
name: "Convolution26" | |
type: "Convolution" | |
bottom: "BatchNorm25" | |
top: "Convolution26" | |
convolution_param { | |
num_output: 12 | |
bias_term: false | |
pad: 1 | |
kernel_size: 3 | |
stride: 1 | |
weight_filler { | |
type: "msra" | |
} | |
bias_filler { | |
type: "constant" | |
} | |
} | |
} | |
layer { | |
name: "Dropout25" | |
type: "Dropout" | |
bottom: "Convolution26" | |
top: "Dropout25" | |
dropout_param { | |
dropout_ratio: 0.2 | |
} | |
} | |
layer { | |
name: "Concat24" | |
type: "Concat" | |
bottom: "Concat23" | |
bottom: "Dropout25" | |
top: "Concat24" | |
concat_param { | |
axis: 1 | |
} | |
} | |
layer { | |
name: "BatchNorm26" | |
type: "BatchNorm" | |
bottom: "Concat24" | |
top: "BatchNorm26" | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
} | |
layer { | |
name: "Scale26" | |
type: "Scale" | |
bottom: "BatchNorm26" | |
top: "BatchNorm26" | |
scale_param { | |
filler { | |
value: 1 | |
} | |
bias_term: true | |
bias_filler { | |
value: 0 | |
} | |
} | |
} | |
layer { | |
name: "ReLU26" | |
type: "ReLU" | |
bottom: "BatchNorm26" | |
top: "BatchNorm26" | |
} | |
layer { | |
name: "Convolution27" | |
type: "Convolution" | |
bottom: "BatchNorm26" | |
top: "Convolution27" | |
convolution_param { | |
num_output: 304 | |
bias_term: false | |
pad: 0 | |
kernel_size: 1 | |
stride: 1 | |
weight_filler { | |
type: "msra" | |
} | |
bias_filler { | |
type: "constant" | |
} | |
} | |
} | |
layer { | |
name: "Dropout26" | |
type: "Dropout" | |
bottom: "Convolution27" | |
top: "Dropout26" | |
dropout_param { | |
dropout_ratio: 0.2 | |
} | |
} | |
layer { | |
name: "Pooling2" | |
type: "Pooling" | |
bottom: "Dropout26" | |
top: "Pooling2" | |
pooling_param { | |
pool: AVE | |
kernel_size: 2 | |
stride: 2 | |
} | |
} | |
layer { | |
name: "BatchNorm27" | |
type: "BatchNorm" | |
bottom: "Pooling2" | |
top: "BatchNorm27" | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
} | |
layer { | |
name: "Scale27" | |
type: "Scale" | |
bottom: "BatchNorm27" | |
top: "BatchNorm27" | |
scale_param { | |
filler { | |
value: 1 | |
} | |
bias_term: true | |
bias_filler { | |
value: 0 | |
} | |
} | |
} | |
layer { | |
name: "ReLU27" | |
type: "ReLU" | |
bottom: "BatchNorm27" | |
top: "BatchNorm27" | |
} | |
layer { | |
name: "Convolution28" | |
type: "Convolution" | |
bottom: "BatchNorm27" | |
top: "Convolution28" | |
convolution_param { | |
num_output: 12 | |
bias_term: false | |
pad: 1 | |
kernel_size: 3 | |
stride: 1 | |
weight_filler { | |
type: "msra" | |
} | |
bias_filler { | |
type: "constant" | |
} | |
} | |
} | |
layer { | |
name: "Dropout27" | |
type: "Dropout" | |
bottom: "Convolution28" | |
top: "Dropout27" | |
dropout_param { | |
dropout_ratio: 0.2 | |
} | |
} | |
layer { | |
name: "Concat25" | |
type: "Concat" | |
bottom: "Pooling2" | |
bottom: "Dropout27" | |
top: "Concat25" | |
concat_param { | |
axis: 1 | |
} | |
} | |
layer { | |
name: "BatchNorm28" | |
type: "BatchNorm" | |
bottom: "Concat25" | |
top: "BatchNorm28" | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
} | |
layer { | |
name: "Scale28" | |
type: "Scale" | |
bottom: "BatchNorm28" | |
top: "BatchNorm28" | |
scale_param { | |
filler { | |
value: 1 | |
} | |
bias_term: true | |
bias_filler { | |
value: 0 | |
} | |
} | |
} | |
layer { | |
name: "ReLU28" | |
type: "ReLU" | |
bottom: "BatchNorm28" | |
top: "BatchNorm28" | |
} | |
layer { | |
name: "Convolution29" | |
type: "Convolution" | |
bottom: "BatchNorm28" | |
top: "Convolution29" | |
convolution_param { | |
num_output: 12 | |
bias_term: false | |
pad: 1 | |
kernel_size: 3 | |
stride: 1 | |
weight_filler { | |
type: "msra" | |
} | |
bias_filler { | |
type: "constant" | |
} | |
} | |
} | |
layer { | |
name: "Dropout28" | |
type: "Dropout" | |
bottom: "Convolution29" | |
top: "Dropout28" | |
dropout_param { | |
dropout_ratio: 0.2 | |
} | |
} | |
layer { | |
name: "Concat26" | |
type: "Concat" | |
bottom: "Concat25" | |
bottom: "Dropout28" | |
top: "Concat26" | |
concat_param { | |
axis: 1 | |
} | |
} | |
layer { | |
name: "BatchNorm29" | |
type: "BatchNorm" | |
bottom: "Concat26" | |
top: "BatchNorm29" | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
} | |
layer { | |
name: "Scale29" | |
type: "Scale" | |
bottom: "BatchNorm29" | |
top: "BatchNorm29" | |
scale_param { | |
filler { | |
value: 1 | |
} | |
bias_term: true | |
bias_filler { | |
value: 0 | |
} | |
} | |
} | |
layer { | |
name: "ReLU29" | |
type: "ReLU" | |
bottom: "BatchNorm29" | |
top: "BatchNorm29" | |
} | |
layer { | |
name: "Convolution30" | |
type: "Convolution" | |
bottom: "BatchNorm29" | |
top: "Convolution30" | |
convolution_param { | |
num_output: 12 | |
bias_term: false | |
pad: 1 | |
kernel_size: 3 | |
stride: 1 | |
weight_filler { | |
type: "msra" | |
} | |
bias_filler { | |
type: "constant" | |
} | |
} | |
} | |
layer { | |
name: "Dropout29" | |
type: "Dropout" | |
bottom: "Convolution30" | |
top: "Dropout29" | |
dropout_param { | |
dropout_ratio: 0.2 | |
} | |
} | |
layer { | |
name: "Concat27" | |
type: "Concat" | |
bottom: "Concat26" | |
bottom: "Dropout29" | |
top: "Concat27" | |
concat_param { | |
axis: 1 | |
} | |
} | |
layer { | |
name: "BatchNorm30" | |
type: "BatchNorm" | |
bottom: "Concat27" | |
top: "BatchNorm30" | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
} | |
layer { | |
name: "Scale30" | |
type: "Scale" | |
bottom: "BatchNorm30" | |
top: "BatchNorm30" | |
scale_param { | |
filler { | |
value: 1 | |
} | |
bias_term: true | |
bias_filler { | |
value: 0 | |
} | |
} | |
} | |
layer { | |
name: "ReLU30" | |
type: "ReLU" | |
bottom: "BatchNorm30" | |
top: "BatchNorm30" | |
} | |
layer { | |
name: "Convolution31" | |
type: "Convolution" | |
bottom: "BatchNorm30" | |
top: "Convolution31" | |
convolution_param { | |
num_output: 12 | |
bias_term: false | |
pad: 1 | |
kernel_size: 3 | |
stride: 1 | |
weight_filler { | |
type: "msra" | |
} | |
bias_filler { | |
type: "constant" | |
} | |
} | |
} | |
layer { | |
name: "Dropout30" | |
type: "Dropout" | |
bottom: "Convolution31" | |
top: "Dropout30" | |
dropout_param { | |
dropout_ratio: 0.2 | |
} | |
} | |
layer { | |
name: "Concat28" | |
type: "Concat" | |
bottom: "Concat27" | |
bottom: "Dropout30" | |
top: "Concat28" | |
concat_param { | |
axis: 1 | |
} | |
} | |
layer { | |
name: "BatchNorm31" | |
type: "BatchNorm" | |
bottom: "Concat28" | |
top: "BatchNorm31" | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
} | |
layer { | |
name: "Scale31" | |
type: "Scale" | |
bottom: "BatchNorm31" | |
top: "BatchNorm31" | |
scale_param { | |
filler { | |
value: 1 | |
} | |
bias_term: true | |
bias_filler { | |
value: 0 | |
} | |
} | |
} | |
layer { | |
name: "ReLU31" | |
type: "ReLU" | |
bottom: "BatchNorm31" | |
top: "BatchNorm31" | |
} | |
layer { | |
name: "Convolution32" | |
type: "Convolution" | |
bottom: "BatchNorm31" | |
top: "Convolution32" | |
convolution_param { | |
num_output: 12 | |
bias_term: false | |
pad: 1 | |
kernel_size: 3 | |
stride: 1 | |
weight_filler { | |
type: "msra" | |
} | |
bias_filler { | |
type: "constant" | |
} | |
} | |
} | |
layer { | |
name: "Dropout31" | |
type: "Dropout" | |
bottom: "Convolution32" | |
top: "Dropout31" | |
dropout_param { | |
dropout_ratio: 0.2 | |
} | |
} | |
layer { | |
name: "Concat29" | |
type: "Concat" | |
bottom: "Concat28" | |
bottom: "Dropout31" | |
top: "Concat29" | |
concat_param { | |
axis: 1 | |
} | |
} | |
layer { | |
name: "BatchNorm32" | |
type: "BatchNorm" | |
bottom: "Concat29" | |
top: "BatchNorm32" | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
} | |
layer { | |
name: "Scale32" | |
type: "Scale" | |
bottom: "BatchNorm32" | |
top: "BatchNorm32" | |
scale_param { | |
filler { | |
value: 1 | |
} | |
bias_term: true | |
bias_filler { | |
value: 0 | |
} | |
} | |
} | |
layer { | |
name: "ReLU32" | |
type: "ReLU" | |
bottom: "BatchNorm32" | |
top: "BatchNorm32" | |
} | |
layer { | |
name: "Convolution33" | |
type: "Convolution" | |
bottom: "BatchNorm32" | |
top: "Convolution33" | |
convolution_param { | |
num_output: 12 | |
bias_term: false | |
pad: 1 | |
kernel_size: 3 | |
stride: 1 | |
weight_filler { | |
type: "msra" | |
} | |
bias_filler { | |
type: "constant" | |
} | |
} | |
} | |
layer { | |
name: "Dropout32" | |
type: "Dropout" | |
bottom: "Convolution33" | |
top: "Dropout32" | |
dropout_param { | |
dropout_ratio: 0.2 | |
} | |
} | |
layer { | |
name: "Concat30" | |
type: "Concat" | |
bottom: "Concat29" | |
bottom: "Dropout32" | |
top: "Concat30" | |
concat_param { | |
axis: 1 | |
} | |
} | |
layer { | |
name: "BatchNorm33" | |
type: "BatchNorm" | |
bottom: "Concat30" | |
top: "BatchNorm33" | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
} | |
layer { | |
name: "Scale33" | |
type: "Scale" | |
bottom: "BatchNorm33" | |
top: "BatchNorm33" | |
scale_param { | |
filler { | |
value: 1 | |
} | |
bias_term: true | |
bias_filler { | |
value: 0 | |
} | |
} | |
} | |
layer { | |
name: "ReLU33" | |
type: "ReLU" | |
bottom: "BatchNorm33" | |
top: "BatchNorm33" | |
} | |
layer { | |
name: "Convolution34" | |
type: "Convolution" | |
bottom: "BatchNorm33" | |
top: "Convolution34" | |
convolution_param { | |
num_output: 12 | |
bias_term: false | |
pad: 1 | |
kernel_size: 3 | |
stride: 1 | |
weight_filler { | |
type: "msra" | |
} | |
bias_filler { | |
type: "constant" | |
} | |
} | |
} | |
layer { | |
name: "Dropout33" | |
type: "Dropout" | |
bottom: "Convolution34" | |
top: "Dropout33" | |
dropout_param { | |
dropout_ratio: 0.2 | |
} | |
} | |
layer { | |
name: "Concat31" | |
type: "Concat" | |
bottom: "Concat30" | |
bottom: "Dropout33" | |
top: "Concat31" | |
concat_param { | |
axis: 1 | |
} | |
} | |
layer { | |
name: "BatchNorm34" | |
type: "BatchNorm" | |
bottom: "Concat31" | |
top: "BatchNorm34" | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
} | |
layer { | |
name: "Scale34" | |
type: "Scale" | |
bottom: "BatchNorm34" | |
top: "BatchNorm34" | |
scale_param { | |
filler { | |
value: 1 | |
} | |
bias_term: true | |
bias_filler { | |
value: 0 | |
} | |
} | |
} | |
layer { | |
name: "ReLU34" | |
type: "ReLU" | |
bottom: "BatchNorm34" | |
top: "BatchNorm34" | |
} | |
layer { | |
name: "Convolution35" | |
type: "Convolution" | |
bottom: "BatchNorm34" | |
top: "Convolution35" | |
convolution_param { | |
num_output: 12 | |
bias_term: false | |
pad: 1 | |
kernel_size: 3 | |
stride: 1 | |
weight_filler { | |
type: "msra" | |
} | |
bias_filler { | |
type: "constant" | |
} | |
} | |
} | |
layer { | |
name: "Dropout34" | |
type: "Dropout" | |
bottom: "Convolution35" | |
top: "Dropout34" | |
dropout_param { | |
dropout_ratio: 0.2 | |
} | |
} | |
layer { | |
name: "Concat32" | |
type: "Concat" | |
bottom: "Concat31" | |
bottom: "Dropout34" | |
top: "Concat32" | |
concat_param { | |
axis: 1 | |
} | |
} | |
layer { | |
name: "BatchNorm35" | |
type: "BatchNorm" | |
bottom: "Concat32" | |
top: "BatchNorm35" | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
} | |
layer { | |
name: "Scale35" | |
type: "Scale" | |
bottom: "BatchNorm35" | |
top: "BatchNorm35" | |
scale_param { | |
filler { | |
value: 1 | |
} | |
bias_term: true | |
bias_filler { | |
value: 0 | |
} | |
} | |
} | |
layer { | |
name: "ReLU35" | |
type: "ReLU" | |
bottom: "BatchNorm35" | |
top: "BatchNorm35" | |
} | |
layer { | |
name: "Convolution36" | |
type: "Convolution" | |
bottom: "BatchNorm35" | |
top: "Convolution36" | |
convolution_param { | |
num_output: 12 | |
bias_term: false | |
pad: 1 | |
kernel_size: 3 | |
stride: 1 | |
weight_filler { | |
type: "msra" | |
} | |
bias_filler { | |
type: "constant" | |
} | |
} | |
} | |
layer { | |
name: "Dropout35" | |
type: "Dropout" | |
bottom: "Convolution36" | |
top: "Dropout35" | |
dropout_param { | |
dropout_ratio: 0.2 | |
} | |
} | |
layer { | |
name: "Concat33" | |
type: "Concat" | |
bottom: "Concat32" | |
bottom: "Dropout35" | |
top: "Concat33" | |
concat_param { | |
axis: 1 | |
} | |
} | |
layer { | |
name: "BatchNorm36" | |
type: "BatchNorm" | |
bottom: "Concat33" | |
top: "BatchNorm36" | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
} | |
layer { | |
name: "Scale36" | |
type: "Scale" | |
bottom: "BatchNorm36" | |
top: "BatchNorm36" | |
scale_param { | |
filler { | |
value: 1 | |
} | |
bias_term: true | |
bias_filler { | |
value: 0 | |
} | |
} | |
} | |
layer { | |
name: "ReLU36" | |
type: "ReLU" | |
bottom: "BatchNorm36" | |
top: "BatchNorm36" | |
} | |
layer { | |
name: "Convolution37" | |
type: "Convolution" | |
bottom: "BatchNorm36" | |
top: "Convolution37" | |
convolution_param { | |
num_output: 12 | |
bias_term: false | |
pad: 1 | |
kernel_size: 3 | |
stride: 1 | |
weight_filler { | |
type: "msra" | |
} | |
bias_filler { | |
type: "constant" | |
} | |
} | |
} | |
layer { | |
name: "Dropout36" | |
type: "Dropout" | |
bottom: "Convolution37" | |
top: "Dropout36" | |
dropout_param { | |
dropout_ratio: 0.2 | |
} | |
} | |
layer { | |
name: "Concat34" | |
type: "Concat" | |
bottom: "Concat33" | |
bottom: "Dropout36" | |
top: "Concat34" | |
concat_param { | |
axis: 1 | |
} | |
} | |
layer { | |
name: "BatchNorm37" | |
type: "BatchNorm" | |
bottom: "Concat34" | |
top: "BatchNorm37" | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
} | |
layer { | |
name: "Scale37" | |
type: "Scale" | |
bottom: "BatchNorm37" | |
top: "BatchNorm37" | |
scale_param { | |
filler { | |
value: 1 | |
} | |
bias_term: true | |
bias_filler { | |
value: 0 | |
} | |
} | |
} | |
layer { | |
name: "ReLU37" | |
type: "ReLU" | |
bottom: "BatchNorm37" | |
top: "BatchNorm37" | |
} | |
layer { | |
name: "Convolution38" | |
type: "Convolution" | |
bottom: "BatchNorm37" | |
top: "Convolution38" | |
convolution_param { | |
num_output: 12 | |
bias_term: false | |
pad: 1 | |
kernel_size: 3 | |
stride: 1 | |
weight_filler { | |
type: "msra" | |
} | |
bias_filler { | |
type: "constant" | |
} | |
} | |
} | |
layer { | |
name: "Dropout37" | |
type: "Dropout" | |
bottom: "Convolution38" | |
top: "Dropout37" | |
dropout_param { | |
dropout_ratio: 0.2 | |
} | |
} | |
layer { | |
name: "Concat35" | |
type: "Concat" | |
bottom: "Concat34" | |
bottom: "Dropout37" | |
top: "Concat35" | |
concat_param { | |
axis: 1 | |
} | |
} | |
layer { | |
name: "BatchNorm38" | |
type: "BatchNorm" | |
bottom: "Concat35" | |
top: "BatchNorm38" | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
} | |
layer { | |
name: "Scale38" | |
type: "Scale" | |
bottom: "BatchNorm38" | |
top: "BatchNorm38" | |
scale_param { | |
filler { | |
value: 1 | |
} | |
bias_term: true | |
bias_filler { | |
value: 0 | |
} | |
} | |
} | |
layer { | |
name: "ReLU38" | |
type: "ReLU" | |
bottom: "BatchNorm38" | |
top: "BatchNorm38" | |
} | |
layer { | |
name: "Convolution39" | |
type: "Convolution" | |
bottom: "BatchNorm38" | |
top: "Convolution39" | |
convolution_param { | |
num_output: 12 | |
bias_term: false | |
pad: 1 | |
kernel_size: 3 | |
stride: 1 | |
weight_filler { | |
type: "msra" | |
} | |
bias_filler { | |
type: "constant" | |
} | |
} | |
} | |
layer { | |
name: "Dropout38" | |
type: "Dropout" | |
bottom: "Convolution39" | |
top: "Dropout38" | |
dropout_param { | |
dropout_ratio: 0.2 | |
} | |
} | |
layer { | |
name: "Concat36" | |
type: "Concat" | |
bottom: "Concat35" | |
bottom: "Dropout38" | |
top: "Concat36" | |
concat_param { | |
axis: 1 | |
} | |
} | |
layer { | |
name: "BatchNorm39" | |
type: "BatchNorm" | |
bottom: "Concat36" | |
top: "BatchNorm39" | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
} | |
layer { | |
name: "Scale39" | |
type: "Scale" | |
bottom: "BatchNorm39" | |
top: "BatchNorm39" | |
scale_param { | |
filler { | |
value: 1 | |
} | |
bias_term: true | |
bias_filler { | |
value: 0 | |
} | |
} | |
} | |
layer { | |
name: "ReLU39" | |
type: "ReLU" | |
bottom: "BatchNorm39" | |
top: "BatchNorm39" | |
} | |
layer { | |
name: "Pooling3" | |
type: "Pooling" | |
bottom: "BatchNorm39" | |
top: "Pooling3" | |
pooling_param { | |
pool: AVE | |
global_pooling: true | |
} | |
} | |
layer { | |
name: "InnerProduct1" | |
type: "InnerProduct" | |
bottom: "Pooling3" | |
top: "InnerProduct1" | |
inner_product_param { | |
num_output: 10 | |
bias_term: true | |
weight_filler { | |
type: "xavier" | |
} | |
bias_filler { | |
type: "constant" | |
} | |
} | |
} | |
layer { | |
name: "SoftmaxWithLoss1" | |
type: "SoftmaxWithLoss" | |
bottom: "InnerProduct1" | |
bottom: "Data2" | |
top: "SoftmaxWithLoss1" | |
} | |
layer { | |
name: "Accuracy1" | |
type: "Accuracy" | |
bottom: "InnerProduct1" | |
bottom: "Data2" | |
top: "Accuracy1" | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment