Skip to content

Instantly share code, notes, and snippets.

@boborbt
Created November 20, 2020 17:50
Show Gist options
  • Select an option

  • Save boborbt/57cb9c43731043ed0efe0f147bc42513 to your computer and use it in GitHub Desktop.

Select an option

Save boborbt/57cb9c43731043ed0efe0f147bc42513 to your computer and use it in GitHub Desktop.
import tensorflow as tf
from tensorflow.keras.layers import Input
from tensorflow.keras.layers import Dense
from tensorflow.keras.models import Model
import numpy as np
import matplotlib.pyplot as plt
import tensorflow.keras.backend as K
x = Input(shape=[5])
h = Dense(10)(x)
h = Dense(20)(h)
y = Dense(5)(h)
model = Model(x,y)
def create_loss(model):
def deriv_loss(y_true, y_pred):
l1 = tf.keras.losses.binary_crossentropy(y_true, y_pred)
l2 = K.sum(K.abs(K.gradients(y_pred, model.input)))
return l1
return deriv_loss
model.compile(loss=create_loss(model))
ds = np.random.multivariate_normal(np.zeros(5), np.eye(5), size=[1000])
model.fit(ds, ds)
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment