An overview of how natural-language modeling evolved from statistical embeddings to modern large language models.
Early NLP (Pre-2010)
β
βββ Bag-of-Words & TF-IDF (1980sβ2000s)
β βββ Represent words as sparse frequency vectors.
β
βββ Latent Semantic Analysis (LSA, 1999)
β βββ Matrix factorization of term-document matrix β captures latent semantics.
β
βββ Statistical / Shallow Embedding Era (2013β2016)
β
βββ Word2Vec (Mikolov et al., 2013)
β βββ Predictive model using shallow neural nets (CBOW / Skip-Gram)
β βββ Learns embeddings from local context windows
β βββ βking β man + woman β queenβ style analogies
β
βββ GloVe (Pennington et al., 2014)
β βββ Global Vectors for Word Representation
β βββ Uses global co-occurrence matrix (count-based)
β βββ Blend of Word2Vec (predictive) + LSA (matrix factorization)
β βββ Static, context-independent embeddings
β
βββ FastText (Facebook, 2016)
βββ Extends Word2Vec using character n-grams
βββ Handles morphology and rare words better
βββββββββββββββββββββββββββββββββββββββββββββββ
Contextual Embedding Era (2017β2018)
β
βββ ELMo (Peters et al., 2018)
β βββ Deep BiLSTM model
β βββ Context-dependent embeddings
β βββ Marks the shift to dynamic meaning
β
βββ ULMFiT (Howard & Ruder, 2018)
β βββ Transfer learning for NLP
β βββ Pretrain a language model β fine-tune on tasks
β βββ Early inspiration for modern fine-tuning
β
βββ Transformer Architecture (Vaswani et al., 2017)
βββ βAttention Is All You Needβ
βββ Introduces self-attention and positional encoding
βββ Foundation for all modern language models
βββββββββββββββββββββββββββββββββββββββββββββββ
Transformer / Large Language Model Era (2018βPresent)
β
βββ BERT Family (Encoder-based)
β βββ BERT (Devlin et al., 2018)
β β βββ Bidirectional Transformer encoder
β β βββ Masked Language Modeling + Next Sentence Prediction
β β βββ Strong at understanding, weak at generation
β β
β βββ RoBERTa (2019) β better training, more data
β βββ ALBERT (2019) β parameter sharing
β βββ DeBERTa (2021) β disentangled attention
β
βββ GPT Family (Decoder-based)
β βββ GPT (OpenAI, 2018)
β β βββ Unidirectional Transformer (decoder-only)
β β βββ Next-token prediction objective
β β βββ First true generative Transformer
β β
β βββ GPT-2 (2019)
β β βββ 1.5 B parameters
β β βββ Zero-shot and few-shot learning
β β βββ Major leap in generation quality
β β
β βββ GPT-3 (2020)
β β βββ 175 B parameters
β β βββ General-purpose few-shot model
β β βββ Foundation for many modern AI apps
β β
β βββ GPT-3.5 (2022)
β β βββ Instruction-tuned (InstructGPT)
β β βββ Optimized for conversation and reasoning (ChatGPT)
β β
β βββ GPT-4 (2023)
β β βββ Multimodal: text + image understanding
β β βββ Strong reasoning and factual consistency
β β βββ Introduces system-level prompt control
β β
β βββ GPT-5 (2025)
β βββ Unified multimodal reasoning (text, image, audio)
β βββ Long-context understanding and tool use
β βββ Generalized reasoning and planning capabilities
β
βββ Other Transformer Families
βββ T5 (2019) β Text-to-Text Transfer Transformer
βββ XLNet (2019) β Permutation language modeling
βββ BART (2019) β Denoising autoencoder for text
βββ LLaMA (Meta, 2023) β Open-source GPT alternative
βββ Claude (Anthropic, 2023) β Constitutional AI safety
βββ Gemini (Google DeepMind, 2024) β Multimodal reasoning
βββ Mistral (2024) β Lightweight open models
βββ Phi (Microsoft, 2024) β Small efficient LLMs
βββββββββββββββββββββββββββββββββββββββββββββββ
- Pre-Deep Learning β Count-based representations (TF-IDF, LSA)
- Shallow Neural Models β Word2Vec, GloVe, FastText (static embeddings)
- Deep Contextual Models β ELMo, ULMFiT (context-aware embeddings)
- Transformer Revolution β Attention mechanism changes everything
- LLM Explosion β GPT, BERT, T5, Claude, Gemini, GPT-5 and beyond