Skip to content

Instantly share code, notes, and snippets.

@bogged-broker
Created December 30, 2025 20:46
Show Gist options
  • Select an option

  • Save bogged-broker/1e42fe04eeec2a8e073496190c52b449 to your computer and use it in GitHub Desktop.

Select an option

Save bogged-broker/1e42fe04eeec2a8e073496190c52b449 to your computer and use it in GitHub Desktop.
"""
Platform Audio Profiles Module
Defines platform-specific audio constraints and optimization profiles for 5M+ view guarantee.
Integrates with audio RL loop, memory manager, and multi-agent virality brain.
"""
import json
from typing import Dict, List, Optional, Tuple, Any
from dataclasses import dataclass, asdict
from enum import Enum
import numpy as np
class Platform(Enum):
"""Supported video platforms"""
TIKTOK = "tiktok"
INSTAGRAM_REELS = "instagram_reels"
YOUTUBE_SHORTS = "youtube_shorts"
SNAPCHAT = "snapchat"
FACEBOOK_REELS = "facebook_reels"
class PlaybackDevice(Enum):
"""Target playback devices"""
PHONE_SPEAKER = "phone_speaker"
EARBUDS = "earbuds"
HEADPHONES = "headphones"
LAPTOP_SPEAKERS = "laptop_speakers"
MONO_FALLBACK = "mono_fallback"
class ViralityTier(Enum):
"""Audio pattern performance tiers"""
HOT = "hot" # Proven viral, use immediately
WARM = "warm" # Moderately successful, occasional reuse
COLD = "cold" # Unproven, experimental, RL exploration
@dataclass
class FrequencyBandProfile:
"""Frequency band optimization per platform"""
low_cut_hz: float # High-pass filter cutoff
low_boost_hz: Tuple[float, float] # Bass boost range
mid_presence_hz: Tuple[float, float] # Vocal clarity range
high_shelf_hz: float # Brightness/air frequency
problem_frequencies: List[Tuple[float, float]] # Ranges to attenuate
# Mobile speaker optimization
phone_safe_low_hz: float # Phones can't reproduce below this
earbuds_sweet_spot_hz: Tuple[float, float] # Optimal earbuds range
@dataclass
class CompressionProfile:
"""Dynamic range compression settings"""
threshold_db: float
ratio: float
attack_ms: float
release_ms: float
knee_db: float
makeup_gain_db: float
sidechain_filter_hz: Optional[float] # For bass preservation
@dataclass
class LoudnessProfile:
"""Platform-specific loudness targets"""
target_lufs: float # Integrated loudness
true_peak_dbtp: float # Maximum true peak
short_term_lufs_range: Tuple[float, float] # Dynamic range bounds
momentary_lufs_max: float # Peak excitement moments
# Streaming normalization targets
platform_normalization_lufs: float # What platform normalizes to
headroom_db: float # Safety margin
@dataclass
class BeatMatchingProfile:
"""Trend-aware beat and rhythm recommendations"""
optimal_bpm_range: Tuple[int, int]
viral_bpm_peaks: List[int] # Most viral BPMs for platform
beat_drop_timing_sec: List[float] # When to place drops
loop_point_requirements: List[float] # For seamless looping
rhythm_patterns: List[str] # e.g., "4-on-floor", "trap-hi-hats"
sync_to_trending_audio: bool # Match current viral audio tempo
@dataclass
class SpatialProfile:
"""Stereo/mono playback rules"""
primary_format: str # "stereo", "mono", "dual_mono"
mono_compatibility_required: bool
stereo_width_percent: float # 0-200%, 100% = full stereo
center_content_db: float # How much to boost center channel
side_content_limit_db: float # Prevent side info loss in mono
# Device-specific handling
phone_speaker_mode: str # "mono_sum", "left_only", "optimized"
earbuds_enhancement: bool # Apply spatial enhancement for earbuds
@dataclass
class ViralAudioPattern:
"""Proven viral audio characteristics"""
pattern_id: str
hook_timing_sec: List[float] # When hooks occur
emotional_peak_timing_sec: List[float] # Emotional crescendos
energy_curve: List[float] # Energy level per second (0-1)
loopability_score: float # 0-1, how well it loops
shareability_score: float # 0-1, predicted share rate
engagement_multiplier: float # Historical engagement boost
# Pattern characteristics
has_earworm_hook: bool
uses_trending_sound: bool
incorporates_silence: bool # Strategic silence for impact
viral_tier: ViralityTier
# Performance tracking
avg_views: float
avg_watch_through_rate: float
avg_replay_rate: float
platforms_successful: List[Platform]
@dataclass
class PlatformAudioProfile:
"""Complete audio profile for a platform"""
platform: Platform
# Core audio specs
loudness: LoudnessProfile
compression: CompressionProfile
frequency_bands: FrequencyBandProfile
spatial: SpatialProfile
beat_matching: BeatMatchingProfile
# Platform constraints
max_duration_sec: float
min_duration_sec: float
recommended_duration_sec: float
sample_rate_hz: int
bit_depth: int
codec: str
max_bitrate_kbps: int
# Virality optimization
viral_patterns: List[ViralAudioPattern]
trending_audio_hooks: List[Dict[str, Any]]
niche_customizations: Dict[str, Any]
# Device assumptions
primary_playback_devices: List[PlaybackDevice]
device_distribution: Dict[PlaybackDevice, float] # Percentage
# Engagement predictions
predicted_ctr: float
predicted_watch_through: float
predicted_loop_rate: float
predicted_share_rate: float
# Platform-specific quirks
algorithm_preferences: Dict[str, Any]
compression_artifacts_tolerance: float
requires_sound_on_indicator: bool
class PlatformAudioProfileManager:
"""Manages platform-specific audio profiles and optimizations"""
def __init__(self):
self.profiles: Dict[Platform, PlatformAudioProfile] = {}
self._initialize_profiles()
self.memory_manager = None # Injected from audio_memory_manager.py
def _initialize_profiles(self):
"""Initialize all platform profiles with 5M+ view optimizations"""
# TikTok Profile - Optimized for viral loops and phone speakers
self.profiles[Platform.TIKTOK] = PlatformAudioProfile(
platform=Platform.TIKTOK,
loudness=LoudnessProfile(
target_lufs=-14.0, # TikTok's sweet spot
true_peak_dbtp=-1.0,
short_term_lufs_range=(-16.0, -10.0),
momentary_lufs_max=-8.0, # Punch for hooks
platform_normalization_lufs=-14.0,
headroom_db=1.0
),
compression=CompressionProfile(
threshold_db=-18.0,
ratio=4.0, # Aggressive for phone speakers
attack_ms=5.0, # Fast for transient preservation
release_ms=50.0,
knee_db=6.0, # Smooth compression
makeup_gain_db=3.0,
sidechain_filter_hz=80.0 # Preserve bass punch
),
frequency_bands=FrequencyBandProfile(
low_cut_hz=30.0, # Remove sub-bass phone can't reproduce
low_boost_hz=(80.0, 150.0), # Punch range for phone speakers
mid_presence_hz=(2000.0, 4000.0), # Vocal intelligibility
high_shelf_hz=8000.0, # Air and clarity
problem_frequencies=[(250.0, 400.0), (3000.0, 3500.0)], # Muddy/harsh
phone_safe_low_hz=50.0,
earbuds_sweet_spot_hz=(200.0, 8000.0)
),
spatial=SpatialProfile(
primary_format="stereo",
mono_compatibility_required=True, # Critical for phone speakers
stereo_width_percent=120.0, # Wider for earbuds
center_content_db=3.0, # Boost vocals/hooks
side_content_limit_db=-6.0,
phone_speaker_mode="optimized",
earbuds_enhancement=True
),
beat_matching=BeatMatchingProfile(
optimal_bpm_range=(120, 150), # TikTok viral sweet spot
viral_bpm_peaks=[128, 140, 145], # Trending tempos
beat_drop_timing_sec=[0.5, 3.0, 7.0], # Hook placement
loop_point_requirements=[15.0, 30.0, 60.0],
rhythm_patterns=["trap-hi-hats", "edm-buildup", "drill-pattern"],
sync_to_trending_audio=True
),
max_duration_sec=180.0,
min_duration_sec=3.0,
recommended_duration_sec=15.0, # 15-sec viral baseline
sample_rate_hz=44100,
bit_depth=16,
codec="AAC",
max_bitrate_kbps=128,
viral_patterns=[
ViralAudioPattern(
pattern_id="tiktok_hook_3sec",
hook_timing_sec=[0.5, 3.0],
emotional_peak_timing_sec=[7.0],
energy_curve=[0.8, 0.9, 1.0, 0.9, 0.8, 0.9, 1.0, 0.85] * 2,
loopability_score=0.95,
shareability_score=0.88,
engagement_multiplier=2.4,
has_earworm_hook=True,
uses_trending_sound=True,
incorporates_silence=False,
viral_tier=ViralityTier.HOT,
avg_views=8500000.0,
avg_watch_through_rate=0.78,
avg_replay_rate=0.42,
platforms_successful=[Platform.TIKTOK]
)
],
trending_audio_hooks=[],
niche_customizations={},
primary_playback_devices=[
PlaybackDevice.PHONE_SPEAKER,
PlaybackDevice.EARBUDS
],
device_distribution={
PlaybackDevice.PHONE_SPEAKER: 0.60,
PlaybackDevice.EARBUDS: 0.35,
PlaybackDevice.HEADPHONES: 0.05
},
predicted_ctr=0.18,
predicted_watch_through=0.75,
predicted_loop_rate=0.38,
predicted_share_rate=0.12,
algorithm_preferences={
"favors_looping": True,
"penalizes_silence_start": True,
"rewards_immediate_hook": True,
"prefers_trending_audio": True
},
compression_artifacts_tolerance=0.7,
requires_sound_on_indicator=False
)
# Instagram Reels Profile - Polished, broadcast-quality optimization
self.profiles[Platform.INSTAGRAM_REELS] = PlatformAudioProfile(
platform=Platform.INSTAGRAM_REELS,
loudness=LoudnessProfile(
target_lufs=-13.0, # Slightly louder than TikTok
true_peak_dbtp=-1.0,
short_term_lufs_range=(-15.0, -9.0),
momentary_lufs_max=-7.0,
platform_normalization_lufs=-14.0,
headroom_db=1.0
),
compression=CompressionProfile(
threshold_db=-16.0,
ratio=3.5, # Less aggressive, more dynamic
attack_ms=10.0,
release_ms=80.0,
knee_db=8.0,
makeup_gain_db=2.5,
sidechain_filter_hz=100.0
),
frequency_bands=FrequencyBandProfile(
low_cut_hz=35.0,
low_boost_hz=(60.0, 120.0),
mid_presence_hz=(1800.0, 5000.0),
high_shelf_hz=10000.0, # More air for polished sound
problem_frequencies=[(200.0, 350.0)],
phone_safe_low_hz=45.0,
earbuds_sweet_spot_hz=(150.0, 10000.0)
),
spatial=SpatialProfile(
primary_format="stereo",
mono_compatibility_required=True,
stereo_width_percent=140.0, # Wider stereo for polish
center_content_db=2.0,
side_content_limit_db=-4.0,
phone_speaker_mode="optimized",
earbuds_enhancement=True
),
beat_matching=BeatMatchingProfile(
optimal_bpm_range=(110, 140),
viral_bpm_peaks=[120, 128, 135],
beat_drop_timing_sec=[1.0, 5.0, 10.0],
loop_point_requirements=[15.0, 30.0, 60.0, 90.0],
rhythm_patterns=["pop-structure", "edm-buildup", "hip-hop-bounce"],
sync_to_trending_audio=True
),
max_duration_sec=90.0,
min_duration_sec=3.0,
recommended_duration_sec=20.0,
sample_rate_hz=48000,
bit_depth=16,
codec="AAC",
max_bitrate_kbps=192,
viral_patterns=[
ViralAudioPattern(
pattern_id="reels_aesthetic_hook",
hook_timing_sec=[1.0, 5.0],
emotional_peak_timing_sec=[10.0, 18.0],
energy_curve=[0.7] * 5 + [0.9] * 5 + [1.0] * 5 + [0.8] * 5,
loopability_score=0.85,
shareability_score=0.82,
engagement_multiplier=2.1,
has_earworm_hook=True,
uses_trending_sound=True,
incorporates_silence=True,
viral_tier=ViralityTier.HOT,
avg_views=6200000.0,
avg_watch_through_rate=0.72,
avg_replay_rate=0.35,
platforms_successful=[Platform.INSTAGRAM_REELS]
)
],
trending_audio_hooks=[],
niche_customizations={},
primary_playback_devices=[
PlaybackDevice.PHONE_SPEAKER,
PlaybackDevice.EARBUDS
],
device_distribution={
PlaybackDevice.PHONE_SPEAKER: 0.55,
PlaybackDevice.EARBUDS: 0.40,
PlaybackDevice.HEADPHONES: 0.05
},
predicted_ctr=0.16,
predicted_watch_through=0.70,
predicted_loop_rate=0.32,
predicted_share_rate=0.15,
algorithm_preferences={
"favors_looping": True,
"penalizes_silence_start": False,
"rewards_immediate_hook": True,
"prefers_trending_audio": True,
"aesthetic_audio_bonus": True
},
compression_artifacts_tolerance=0.6,
requires_sound_on_indicator=False
)
# YouTube Shorts Profile - Watch-through optimized
self.profiles[Platform.YOUTUBE_SHORTS] = PlatformAudioProfile(
platform=Platform.YOUTUBE_SHORTS,
loudness=LoudnessProfile(
target_lufs=-14.0,
true_peak_dbtp=-1.0,
short_term_lufs_range=(-16.0, -11.0),
momentary_lufs_max=-9.0,
platform_normalization_lufs=-14.0,
headroom_db=1.0
),
compression=CompressionProfile(
threshold_db=-20.0,
ratio=3.0, # Gentle, broadcast-style
attack_ms=15.0,
release_ms=100.0,
knee_db=10.0,
makeup_gain_db=2.0,
sidechain_filter_hz=120.0
),
frequency_bands=FrequencyBandProfile(
low_cut_hz=40.0,
low_boost_hz=(70.0, 130.0),
mid_presence_hz=(2000.0, 5000.0),
high_shelf_hz=9000.0,
problem_frequencies=[(300.0, 450.0)],
phone_safe_low_hz=50.0,
earbuds_sweet_spot_hz=(180.0, 12000.0)
),
spatial=SpatialProfile(
primary_format="stereo",
mono_compatibility_required=True,
stereo_width_percent=130.0,
center_content_db=2.5,
side_content_limit_db=-5.0,
phone_speaker_mode="optimized",
earbuds_enhancement=True
),
beat_matching=BeatMatchingProfile(
optimal_bpm_range=(100, 145),
viral_bpm_peaks=[115, 128, 140],
beat_drop_timing_sec=[2.0, 10.0, 20.0],
loop_point_requirements=[30.0, 60.0],
rhythm_patterns=["storytelling-pace", "buildup-payoff", "sustained-energy"],
sync_to_trending_audio=False # Less trend-dependent
),
max_duration_sec=60.0,
min_duration_sec=15.0,
recommended_duration_sec=30.0,
sample_rate_hz=48000,
bit_depth=16,
codec="AAC",
max_bitrate_kbps=256,
viral_patterns=[
ViralAudioPattern(
pattern_id="shorts_watchthrough_30sec",
hook_timing_sec=[2.0, 15.0],
emotional_peak_timing_sec=[25.0],
energy_curve=[0.7, 0.75, 0.8, 0.85, 0.9, 0.95, 1.0, 0.9, 0.85, 0.8] * 3,
loopability_score=0.70,
shareability_score=0.75,
engagement_multiplier=1.9,
has_earworm_hook=False,
uses_trending_sound=False,
incorporates_silence=True,
viral_tier=ViralityTier.WARM,
avg_views=5800000.0,
avg_watch_through_rate=0.68,
avg_replay_rate=0.28,
platforms_successful=[Platform.YOUTUBE_SHORTS]
)
],
trending_audio_hooks=[],
niche_customizations={},
primary_playback_devices=[
PlaybackDevice.PHONE_SPEAKER,
PlaybackDevice.EARBUDS,
PlaybackDevice.LAPTOP_SPEAKERS
],
device_distribution={
PlaybackDevice.PHONE_SPEAKER: 0.50,
PlaybackDevice.EARBUDS: 0.35,
PlaybackDevice.LAPTOP_SPEAKERS: 0.10,
PlaybackDevice.HEADPHONES: 0.05
},
predicted_ctr=0.14,
predicted_watch_through=0.65,
predicted_loop_rate=0.25,
predicted_share_rate=0.10,
algorithm_preferences={
"favors_looping": False,
"penalizes_silence_start": False,
"rewards_immediate_hook": True,
"prefers_trending_audio": False,
"watch_time_priority": True
},
compression_artifacts_tolerance=0.5,
requires_sound_on_indicator=False
)
def get_platform_profile(self, platform: Platform) -> PlatformAudioProfile:
"""
Get complete audio profile for specified platform.
Args:
platform: Target platform enum
Returns:
PlatformAudioProfile with all optimization parameters
"""
if platform not in self.profiles:
raise ValueError(f"Unsupported platform: {platform}")
return self.profiles[platform]
def get_optimal_lufs(self, platform: Platform) -> float:
"""Get target LUFS for platform"""
return self.profiles[platform].loudness.target_lufs
def get_compression_settings(self, platform: Platform) -> CompressionProfile:
"""Get compression profile for platform"""
return self.profiles[platform].compression
def get_frequency_profile(self, platform: Platform) -> FrequencyBandProfile:
"""Get frequency optimization profile"""
return self.profiles[platform].frequency_bands
def get_spatial_rules(self, platform: Platform) -> SpatialProfile:
"""Get mono/stereo playback rules"""
return self.profiles[platform].spatial
def get_beat_matching_recommendations(self, platform: Platform) -> BeatMatchingProfile:
"""Get trend-aware beat matching recommendations"""
return self.profiles[platform].beat_matching
def simulate_playback(
self,
audio_data: np.ndarray,
platform: Platform,
device: PlaybackDevice
) -> Tuple[np.ndarray, Dict[str, Any]]:
"""
Simulate audio playback on specific device for platform.
Args:
audio_data: Input audio array
platform: Target platform
device: Playback device to simulate
Returns:
Tuple of (simulated_audio, diagnostic_report)
"""
profile = self.profiles[platform]
freq_profile = profile.frequency_bands
simulated_audio = audio_data.copy()
warnings = []
# Device-specific simulation
if device == PlaybackDevice.PHONE_SPEAKER:
# Apply phone speaker frequency response
# High-pass filter to remove inaudible low frequencies
simulated_audio = self._apply_highpass_filter(
simulated_audio,
freq_profile.phone_safe_low_hz
)
# Simulate mono summing (most phone speakers are mono)
if simulated_audio.ndim > 1:
simulated_audio = np.mean(simulated_audio, axis=0)
warnings.append("Phone speaker: Stereo collapsed to mono")
# Simulate limited dynamic range
simulated_audio = self._apply_phone_speaker_compression(simulated_audio)
elif device == PlaybackDevice.EARBUDS:
# Earbuds frequency response simulation
simulated_audio = self._apply_earbuds_response(
simulated_audio,
freq_profile.earbuds_sweet_spot_hz
)
elif device == PlaybackDevice.MONO_FALLBACK:
# Worst-case mono compatibility check
if simulated_audio.ndim > 1:
simulated_audio = np.mean(simulated_audio, axis=0)
warnings.append("Mono fallback: All stereo information lost")
# Analyze intelligibility
intelligibility_score = self._analyze_intelligibility(simulated_audio)
if intelligibility_score < 0.7:
warnings.append(f"Low intelligibility: {intelligibility_score:.2f}")
# Analyze clarity
clarity_score = self._analyze_clarity(simulated_audio)
if clarity_score < 0.65:
warnings.append(f"Clarity issues detected: {clarity_score:.2f}")
diagnostic_report = {
"device": device.value,
"platform": platform.value,
"intelligibility_score": intelligibility_score,
"clarity_score": clarity_score,
"warnings": warnings,
"peak_level_db": 20 * np.log10(np.abs(simulated_audio).max() + 1e-10),
"rms_level_db": 20 * np.log10(np.sqrt(np.mean(simulated_audio**2)) + 1e-10)
}
return simulated_audio, diagnostic_report
def normalize_loudness(
self,
audio_data: np.ndarray,
platform: Platform,
preserve_dynamics: bool = True
) -> Tuple[np.ndarray, Dict[str, float]]:
"""
Normalize audio to platform target loudness.
Args:
audio_data: Input audio array
platform: Target platform
preserve_dynamics: Whether to preserve dynamic range
Returns:
Tuple of (normalized_audio, loudness_metrics)
"""
profile = self.profiles[platform]
target_lufs = profile.loudness.target_lufs
# Measure current loudness (simplified)
current_rms = np.sqrt(np.mean(audio_data**2))
current_lufs = -23.0 + 20 * np.log10(current_rms + 1e-10)
# Calculate gain adjustment
gain_db = target_lufs - current_lufs
gain_linear = 10 ** (gain_db / 20.0)
normalized_audio = audio_data * gain_linear
# Apply peak limiting to prevent clipping
peak_limit = 10 ** (profile.loudness.true_peak_dbtp / 20.0)
peak = np.abs(normalized_audio).max()
if peak > peak_limit:
normalized_audio *= (peak_limit / peak)
# Apply compression if preserving dynamics
if preserve_dynamics:
normalized_audio = self._apply_dynamic_compression(
normalized_audio,
profile.compression
)
metrics = {
"input_lufs": current_lufs,
"output_lufs": target_lufs,
"gain_applied_db": gain_db,
"peak_limited": peak > peak_limit
}
return normalized_audio, metrics
def generate_candidate_variants(
self,
base_audio: np.ndarray,
platform: Platform,
num_variants: int = 5
) -> List[Dict[str, Any]]:
"""
Generate multiple audio variants optimized for virality.
Args:
base_audio: Base audio to create variants from
platform: Target platform
num_variants: Number of variants to generate
Returns:
List of variant dictionaries with audio and predicted scores
"""
profile = self.profiles[platform]
variants = []
for i in range(num_variants):
variant_audio = base_audio.copy()
# Apply different optimization strategies
if i == 0:
# Aggressive compression for maximum loudness
variant_audio = self._apply_aggressive_compression(variant_audio)
strategy = "max_loudness"
elif i == 1:
# Dynamic preservation for emotional impact
variant_audio = self._preserve_dynamics(variant_audio)
strategy = "dynamic_emotional"
elif i == 2:
# Beat-aligned enhancement
variant_audio = self._enhance_beat_alignment(variant_audio, profile)
strategy = "beat_optimized"
elif i == 3:
# Frequency sculpting for phone speakers
variant_audio = self._optimize_for_phone_speakers(variant_audio, profile)
strategy = "phone_optimized"
else:
# Experimental RL-guided variation
variant_audio = self._apply_rl_exploration(variant_audio)
strategy = "rl_experimental"
# Predict engagement scores
engagement_score = self._predict_engagement(variant_audio, profile)
variants.append({
"variant_id": f"{platform.value}_v{i}_{strategy}",
"audio": variant_audio,
"strategy": strategy,
"predicted_engagement": engagement_score,
"predicted_ctr": engagement_score * profile.predicted_ctr,
"predicted_watch_through": engagement_score * profile.predicted_watch_through,
"loopability_score": self._calculate_loopability(variant_audio),
"virality_tier": self._assign_virality_tier(engagement_score)
})
# Sort by predicted engagement
variants.sort(key=lambda x: x["predicted_engagement"], reverse=True)
return variants
def update_profile_with_feedback(
self,
platform: Platform,
variant_id: str,
engagement_metrics: Dict[str, float]
):
"""
Update platform profile based on real engagement feedback.
Args:
platform: Platform that was tested
variant_id: ID of audio variant
engagement_metrics: Actual engagement data from video
"""
profile = self.profiles[platform]
# Update predicted metrics with weighted average
alpha = 0.1 # Learning rate
if "ctr" in engagement_metrics:
profile.predicted_ctr = (
(1 - alpha) * profile.predicted_ctr +
alpha * engagement_metrics["ctr"]
)
if "watch_through_rate" in engagement_metrics:
profile.predicted_watch_through = (
(1 - alpha) * profile.predicted_watch_through +
alpha * engagement_metrics["watch_through_rate"]
)
if "loop_rate" in engagement_metrics:
profile.predicted_loop_rate = (
(1 - alpha) * profile.predicted_loop_rate +
alpha * engagement_metrics["loop_rate"]
)
# Store successful patterns for memory manager
if self.memory_manager and engagement_metrics.get("views", 0) > 1000000:
self.memory_manager.store_viral_pattern(
platform=platform.value,
variant_id=variant_id,
metrics=engagement_metrics
)
def get_cross_platform_optimization(
self,
audio_data: np.ndarray,
platforms: List[Platform]
) -> Dict[Platform, np.ndarray]:
"""
Generate platform-specific optimized versions from single audio
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment