Created
December 30, 2025 20:07
-
-
Save bogged-broker/793f55a20acea2f64ca6e00af26c2461 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| """ | |
| audio_reinforcement_loop.py | |
| Multi-Agent Reinforcement Learning system for audio virality optimization. | |
| Continuously learns from performance metrics and autonomously adapts audio | |
| generation parameters to maximize viral potential (5M+ views baseline). | |
| Architecture: | |
| - Primary Audio Agent: Optimizes core audio virality patterns | |
| - Visual/Hook Agent: Aligns audio with visual elements | |
| - Meta-Viral Agent: Oversees engagement predictions and reward multipliers | |
| - Real-time feedback integration with platform-specific tuning | |
| """ | |
| import json | |
| import numpy as np | |
| from typing import Dict, List, Tuple, Optional, Any | |
| from dataclasses import dataclass, field, asdict | |
| from datetime import datetime, timedelta | |
| from collections import defaultdict, deque | |
| import hashlib | |
| import logging | |
| from enum import Enum | |
| # Configure logging | |
| logging.basicConfig(level=logging.INFO) | |
| logger = logging.getLogger(__name__) | |
| class Platform(Enum): | |
| """Supported platforms with specific optimization rules""" | |
| TIKTOK = "tiktok" | |
| YOUTUBE_SHORTS = "youtube_shorts" | |
| INSTAGRAM_REELS = "instagram_reels" | |
| class BeatType(Enum): | |
| """Audio beat patterns""" | |
| TRAP = "trap" | |
| DRILL = "drill" | |
| HYPERPOP = "hyperpop" | |
| PHONK = "phonk" | |
| LOFI = "lofi" | |
| ORCHESTRAL = "orchestral" | |
| ELECTRONIC = "electronic" | |
| CUSTOM = "custom" | |
| class MemoryLayer(Enum): | |
| """Memory priority tiers""" | |
| HOT = "hot" # Recently viral, actively used | |
| WARM = "warm" # Proven patterns, occasionally used | |
| COLD = "cold" # Historical data, rarely accessed | |
| @dataclass | |
| class AudioFeatures: | |
| """Comprehensive audio feature representation""" | |
| pace_wpm: float | |
| pitch_variance: float | |
| hook_jumps: int | |
| pause_timing: List[float] | |
| spectral_centroid: float | |
| emotional_intensity: float | |
| beat_alignment_error: float | |
| volume_dynamics: float | |
| timbre_complexity: float | |
| tempo_bpm: float | |
| syllable_timing_variance: float | |
| def to_vector(self) -> np.ndarray: | |
| """Convert features to numerical vector for RL processing""" | |
| return np.array([ | |
| self.pace_wpm, | |
| self.pitch_variance, | |
| float(self.hook_jumps), | |
| np.mean(self.pause_timing) if self.pause_timing else 0.0, | |
| self.spectral_centroid, | |
| self.emotional_intensity, | |
| self.beat_alignment_error, | |
| self.volume_dynamics, | |
| self.timbre_complexity, | |
| self.tempo_bpm, | |
| self.syllable_timing_variance | |
| ]) | |
| @dataclass | |
| class PerformanceMetrics: | |
| """Video performance tracking""" | |
| views: int | |
| retention_2s: float # % who watched 2+ seconds | |
| completion_rate: float | |
| replay_rate: float | |
| shares: int | |
| saves: int | |
| comments: int | |
| likes: int | |
| watch_through_rate: float | |
| loop_frequency: float | |
| first_3s_retention: float | |
| ctr: float # Click-through rate for thumbnails | |
| def viral_score(self, platform: Platform) -> float: | |
| """Calculate platform-specific viral score""" | |
| if platform == Platform.TIKTOK: | |
| # TikTok prioritizes loopability and first 3s retention | |
| return ( | |
| self.loop_frequency * 0.35 + | |
| self.first_3s_retention * 0.30 + | |
| self.completion_rate * 0.20 + | |
| min(self.views / 5_000_000, 1.0) * 0.15 | |
| ) | |
| elif platform == Platform.YOUTUBE_SHORTS: | |
| # YouTube prioritizes watch-through and CTR | |
| return ( | |
| self.watch_through_rate * 0.35 + | |
| self.ctr * 0.25 + | |
| self.completion_rate * 0.20 + | |
| min(self.views / 5_000_000, 1.0) * 0.20 | |
| ) | |
| else: # Instagram Reels | |
| return ( | |
| self.shares / max(self.views, 1) * 0.30 + | |
| self.saves / max(self.views, 1) * 0.25 + | |
| self.completion_rate * 0.25 + | |
| min(self.views / 5_000_000, 1.0) * 0.20 | |
| ) | |
| @dataclass | |
| class AudioPattern: | |
| """Identified viral audio pattern""" | |
| pattern_id: str | |
| features: AudioFeatures | |
| niche: str | |
| platform: Platform | |
| beat_type: BeatType | |
| voice_style: str | |
| language: str | |
| music_track: Optional[str] | |
| trending_beat: bool | |
| # Performance tracking | |
| times_used: int = 0 | |
| total_views: int = 0 | |
| avg_viral_score: float = 0.0 | |
| last_used: Optional[datetime] = None | |
| # Memory management | |
| memory_layer: MemoryLayer = MemoryLayer.WARM | |
| decay_factor: float = 1.0 | |
| efficacy_score: float = 0.0 | |
| def update_performance(self, metrics: PerformanceMetrics, platform: Platform): | |
| """Update pattern performance with new data""" | |
| self.times_used += 1 | |
| self.total_views += metrics.views | |
| viral_score = metrics.viral_score(platform) | |
| # Exponential moving average for viral score | |
| alpha = 0.3 # Learning rate | |
| self.avg_viral_score = ( | |
| alpha * viral_score + (1 - alpha) * self.avg_viral_score | |
| if self.avg_viral_score > 0 else viral_score | |
| ) | |
| self.last_used = datetime.now() | |
| self.efficacy_score = self._calculate_efficacy() | |
| self._update_memory_layer() | |
| def _calculate_efficacy(self) -> float: | |
| """Calculate pattern efficacy score""" | |
| view_score = min(self.total_views / (5_000_000 * self.times_used), 1.0) | |
| consistency_score = self.avg_viral_score | |
| recency_bonus = 1.2 if self.trending_beat else 1.0 | |
| usage_factor = min(self.times_used / 10, 1.0) # Proven patterns score higher | |
| return (view_score * 0.4 + consistency_score * 0.4 + usage_factor * 0.2) * recency_bonus | |
| def _update_memory_layer(self): | |
| """Dynamically assign memory layer based on performance and recency""" | |
| days_since_use = (datetime.now() - self.last_used).days if self.last_used else 999 | |
| if self.efficacy_score > 0.7 and days_since_use < 7: | |
| self.memory_layer = MemoryLayer.HOT | |
| elif self.efficacy_score > 0.5 and days_since_use < 30: | |
| self.memory_layer = MemoryLayer.WARM | |
| else: | |
| self.memory_layer = MemoryLayer.COLD | |
| def apply_decay(self): | |
| """Apply time-based decay to pattern weights""" | |
| days_since_use = (datetime.now() - self.last_used).days if self.last_used else 999 | |
| self.decay_factor = np.exp(-0.05 * days_since_use) # Exponential decay | |
| @dataclass | |
| class ActionSpace: | |
| """Available audio modification actions""" | |
| hook_selection: int # Index of hook variant to use | |
| beat_timing_adjustment: float # -0.5 to +0.5 seconds | |
| volume_modulation: float # 0.5 to 1.5 multiplier | |
| pitch_shift: float # -2 to +2 semitones | |
| voice_modulation: str # "energetic", "calm", "dramatic", etc. | |
| transition_type: str # "cut", "fade", "beat_drop", etc. | |
| effect_intensity: float # 0.0 to 1.0 | |
| def to_vector(self) -> np.ndarray: | |
| """Convert action to numerical vector""" | |
| voice_map = {"energetic": 1.0, "calm": 0.3, "dramatic": 0.7, "neutral": 0.5} | |
| transition_map = {"cut": 1.0, "fade": 0.5, "beat_drop": 0.8, "none": 0.0} | |
| return np.array([ | |
| float(self.hook_selection), | |
| self.beat_timing_adjustment, | |
| self.volume_modulation, | |
| self.pitch_shift, | |
| voice_map.get(self.voice_modulation, 0.5), | |
| transition_map.get(self.transition_type, 0.5), | |
| self.effect_intensity | |
| ]) | |
| @dataclass | |
| class State: | |
| """Complete RL state representation""" | |
| audio_features: AudioFeatures | |
| video_context: Dict[str, Any] | |
| platform: Platform | |
| niche: str | |
| beat_type: BeatType | |
| historical_patterns: List[AudioPattern] | |
| viewer_projections: Dict[str, float] | |
| platform_trends: Dict[str, float] | |
| def to_vector(self) -> np.ndarray: | |
| """Convert state to numerical vector for neural network input""" | |
| audio_vec = self.audio_features.to_vector() | |
| # Video context features | |
| scene_cuts = self.video_context.get('scene_cuts', 0) | |
| predicted_ctr = self.video_context.get('predicted_ctr', 0.5) | |
| hook_position = self.video_context.get('hook_position', 0.0) | |
| # Viewer projections | |
| predicted_watch_time = self.viewer_projections.get('watch_time', 0.5) | |
| loop_probability = self.viewer_projections.get('loop_prob', 0.5) | |
| # Platform trends | |
| trending_score = self.platform_trends.get('trending_score', 0.5) | |
| context_vec = np.array([ | |
| float(scene_cuts), | |
| predicted_ctr, | |
| hook_position, | |
| predicted_watch_time, | |
| loop_probability, | |
| trending_score | |
| ]) | |
| return np.concatenate([audio_vec, context_vec]) | |
| class RewardFunction: | |
| """Dynamic reward calculation for RL agents""" | |
| def __init__(self): | |
| self.weights = { | |
| 'views': 0.25, | |
| 'retention': 0.25, | |
| 'engagement': 0.25, | |
| 'loopability': 0.25 | |
| } | |
| self.platform_multipliers = { | |
| Platform.TIKTOK: {'loopability': 1.5, 'first_3s': 1.3}, | |
| Platform.YOUTUBE_SHORTS: {'watch_through': 1.4, 'ctr': 1.3}, | |
| Platform.INSTAGRAM_REELS: {'shares': 1.5, 'saves': 1.4} | |
| } | |
| def calculate( | |
| self, | |
| metrics: PerformanceMetrics, | |
| platform: Platform, | |
| predicted_metrics: Dict[str, float], | |
| pattern_history: List[AudioPattern] | |
| ) -> float: | |
| """Calculate reward with dynamic weighting and early boost""" | |
| # Base viral score | |
| viral_score = metrics.viral_score(platform) | |
| # View threshold reward | |
| view_reward = self._view_threshold_reward(metrics.views) | |
| # Early retention boost | |
| retention_boost = self._early_retention_boost(metrics.retention_2s, metrics.first_3s_retention) | |
| # Platform-specific multipliers | |
| platform_bonus = self._platform_specific_bonus(metrics, platform) | |
| # Anti-viral penalties | |
| penalties = self._calculate_penalties(metrics, pattern_history) | |
| # Prediction accuracy bonus | |
| prediction_bonus = self._prediction_accuracy(metrics, predicted_metrics) | |
| total_reward = ( | |
| viral_score * self.weights['views'] * view_reward + | |
| retention_boost * self.weights['retention'] + | |
| platform_bonus * self.weights['engagement'] + | |
| prediction_bonus * self.weights['loopability'] - | |
| penalties | |
| ) | |
| return max(total_reward, 0.0) | |
| def _view_threshold_reward(self, views: int) -> float: | |
| """Reward based on view milestones""" | |
| if views >= 10_000_000: | |
| return 2.0 | |
| elif views >= 5_000_000: | |
| return 1.5 | |
| elif views >= 1_000_000: | |
| return 1.2 | |
| elif views >= 500_000: | |
| return 1.0 | |
| else: | |
| return 0.5 | |
| def _early_retention_boost(self, retention_2s: float, retention_3s: float) -> float: | |
| """Bonus for strong early retention""" | |
| if retention_3s > 0.8: | |
| return 1.5 | |
| elif retention_2s > 0.7: | |
| return 1.2 | |
| else: | |
| return 1.0 | |
| def _platform_specific_bonus(self, metrics: PerformanceMetrics, platform: Platform) -> float: | |
| """Apply platform-specific engagement multipliers""" | |
| multipliers = self.platform_multipliers.get(platform, {}) | |
| bonus = 0.0 | |
| if platform == Platform.TIKTOK: | |
| bonus += metrics.loop_frequency * multipliers.get('loopability', 1.0) | |
| bonus += metrics.first_3s_retention * multipliers.get('first_3s', 1.0) | |
| elif platform == Platform.YOUTUBE_SHORTS: | |
| bonus += metrics.watch_through_rate * multipliers.get('watch_through', 1.0) | |
| bonus += metrics.ctr * multipliers.get('ctr', 1.0) | |
| return bonus | |
| def _calculate_penalties(self, metrics: PerformanceMetrics, pattern_history: List[AudioPattern]) -> float: | |
| """Penalize anti-viral patterns""" | |
| penalty = 0.0 | |
| # Low completion penalty | |
| if metrics.completion_rate < 0.3: | |
| penalty += 0.3 | |
| # Overused pattern penalty (audience fatigue) | |
| if pattern_history: | |
| recent_usage = sum(1 for p in pattern_history[-10:] if p.times_used > 5) | |
| if recent_usage > 7: | |
| penalty += 0.2 | |
| # Poor engagement penalty | |
| engagement_rate = (metrics.likes + metrics.shares + metrics.comments) / max(metrics.views, 1) | |
| if engagement_rate < 0.01: | |
| penalty += 0.15 | |
| return penalty | |
| def _prediction_accuracy(self, actual: PerformanceMetrics, predicted: Dict[str, float]) -> float: | |
| """Bonus for accurate predictions""" | |
| if not predicted: | |
| return 0.5 | |
| actual_watch = actual.watch_through_rate | |
| predicted_watch = predicted.get('watch_time', 0.5) | |
| accuracy = 1.0 - abs(actual_watch - predicted_watch) | |
| return accuracy * 0.5 | |
| class AudioAgent: | |
| """Primary audio optimization agent""" | |
| def __init__(self, agent_id: str): | |
| self.agent_id = agent_id | |
| self.q_table = defaultdict(lambda: np.random.randn(7) * 0.01) # 7 action dimensions | |
| self.learning_rate = 0.01 | |
| self.discount_factor = 0.95 | |
| self.epsilon = 0.2 # Exploration rate | |
| self.episode_count = 0 | |
| def select_action(self, state: State, explore: bool = True) -> ActionSpace: | |
| """Select audio modification action using epsilon-greedy policy""" | |
| state_key = self._state_to_key(state) | |
| if explore and np.random.random() < self.epsilon: | |
| # Exploration: random action | |
| return self._random_action() | |
| else: | |
| # Exploitation: best known action | |
| q_values = self.q_table[state_key] | |
| return self._q_values_to_action(q_values) | |
| def update(self, state: State, action: ActionSpace, reward: float, next_state: State): | |
| """Update Q-values using TD learning""" | |
| state_key = self._state_to_key(state) | |
| next_state_key = self._state_to_key(next_state) | |
| action_vec = action.to_vector() | |
| current_q = self.q_table[state_key] | |
| next_q = self.q_table[next_state_key] | |
| # TD update: Q(s,a) = Q(s,a) + α[r + γ max Q(s',a') - Q(s,a)] | |
| td_target = reward + self.discount_factor * np.max(next_q) | |
| td_error = td_target - np.dot(current_q, action_vec) | |
| self.q_table[state_key] += self.learning_rate * td_error * action_vec | |
| self.episode_count += 1 | |
| self._decay_epsilon() | |
| def _state_to_key(self, state: State) -> str: | |
| """Convert state to hashable key""" | |
| state_vec = state.to_vector() | |
| # Discretize continuous values for Q-table indexing | |
| discretized = tuple(np.round(state_vec, 2)) | |
| return hashlib.md5(str(discretized).encode()).hexdigest()[:16] | |
| def _random_action(self) -> ActionSpace: | |
| """Generate random exploration action""" | |
| return ActionSpace( | |
| hook_selection=np.random.randint(0, 5), | |
| beat_timing_adjustment=np.random.uniform(-0.5, 0.5), | |
| volume_modulation=np.random.uniform(0.7, 1.3), | |
| pitch_shift=np.random.uniform(-1.5, 1.5), | |
| voice_modulation=np.random.choice(["energetic", "calm", "dramatic", "neutral"]), | |
| transition_type=np.random.choice(["cut", "fade", "beat_drop", "none"]), | |
| effect_intensity=np.random.uniform(0.2, 0.9) | |
| ) | |
| def _q_values_to_action(self, q_values: np.ndarray) -> ActionSpace: | |
| """Convert Q-values to action space""" | |
| return ActionSpace( | |
| hook_selection=int(abs(q_values[0]) % 5), | |
| beat_timing_adjustment=np.clip(q_values[1], -0.5, 0.5), | |
| volume_modulation=np.clip(q_values[2], 0.5, 1.5), | |
| pitch_shift=np.clip(q_values[3], -2.0, 2.0), | |
| voice_modulation=["energetic", "calm", "dramatic", "neutral"][int(abs(q_values[4]) % 4)], | |
| transition_type=["cut", "fade", "beat_drop", "none"][int(abs(q_values[5]) % 4)], | |
| effect_intensity=np.clip(q_values[6], 0.0, 1.0) | |
| ) | |
| def _decay_epsilon(self): | |
| """Gradually reduce exploration rate""" | |
| self.epsilon = max(0.05, self.epsilon * 0.9995) | |
| class MetaViralAgent: | |
| """Meta-agent for overseeing engagement predictions and reward multipliers""" | |
| def __init__(self): | |
| self.prediction_history = deque(maxlen=1000) | |
| self.reward_multipliers = { | |
| 'trending': 1.0, | |
| 'niche': 1.0, | |
| 'platform': 1.0 | |
| } | |
| def predict_engagement(self, state: State, action: ActionSpace) -> Dict[str, float]: | |
| """Predict engagement metrics for state-action pair""" | |
| # Simple prediction based on historical patterns | |
| predictions = { | |
| 'views': self._predict_views(state, action), | |
| 'watch_time': self._predict_watch_time(state), | |
| 'loop_prob': self._predict_loop_probability(state, action), | |
| 'viral_score': self._predict_viral_score(state, action) | |
| } | |
| return predictions | |
| def adjust_reward_multipliers(self, recent_performance: List[Tuple[State, PerformanceMetrics]]): | |
| """Dynamically adjust reward multipliers based on recent trends""" | |
| if len(recent_performance) < 10: | |
| return | |
| # Analyze trending patterns | |
| trending_videos = [p for s, p in recent_performance if s.platform_trends.get('trending_score', 0) > 0.7] | |
| if len(trending_videos) >= 5: | |
| avg_trending_score = np.mean([p.viral_score(s.platform) for s, p in recent_performance if s.platform_trends.get('trending_score', 0) > 0.7]) | |
| self.reward_multipliers['trending'] = 1.0 + (avg_trending_score - 0.5) * 0.5 | |
| # Adjust platform multipliers | |
| platform_scores = defaultdict(list) | |
| for state, metrics in recent_performance: | |
| platform_scores[state.platform].append(metrics.viral_score(state.platform)) | |
| for platform, scores in platform_scores.items(): | |
| avg_score = np.mean(scores) | |
| self.reward_multipliers[platform.value] = 1.0 + (avg_score - 0.5) * 0.3 | |
| def _predict_views(self, state: State, action: ActionSpace) -> float: | |
| """Predict view count based on state and action""" | |
| # Simplified prediction model | |
| base_views = 1_000_000 | |
| feature_boost = state.audio_features.emotional_intensity * 0.5 | |
| platform_factor = 1.2 if state.platform == Platform.TIKTOK else 1.0 | |
| return base_views * (1 + feature_boost) * platform_factor | |
| def _predict_watch_time(self, state: State) -> float: | |
| """Predict watch-through rate""" | |
| return state.viewer_projections.get('watch_time', 0.5) | |
| def _predict_loop_probability(self, state: State, action: ActionSpace) -> float: | |
| """Predict likelihood of video loops""" | |
| hook_quality = 0.7 if action.hook_selection < 2 else 0.5 | |
| beat_alignment = 1.0 - state.audio_features.beat_alignment_error | |
| return (hook_quality + beat_alignment) / 2.0 | |
| def _predict_viral_score(self, state: State, action: ActionSpace) -> float: | |
| """Overall viral potential prediction""" | |
| predictions = { | |
| 'views': self._predict_views(state, action), | |
| 'watch_time': self._predict_watch_time(state), | |
| 'loop_prob': self._predict_loop_probability(state, action) | |
| } | |
| return (predictions['watch_time'] * 0.4 + predictions['loop_prob'] * 0.6) | |
| class AudioMemoryManager: | |
| """Manages audio patterns with HOT/WARM/COLD memory layers""" | |
| def __init__(self): | |
| self.patterns: Dict[str, AudioPattern] = {} | |
| self.hot_patterns: List[str] = [] | |
| self.warm_patterns: List[str] = [] | |
| self.cold_patterns: List[str] = [] | |
| self.replay_buffer = deque(maxlen=100) | |
| def store_pattern(self, pattern: AudioPattern): | |
| """Store audio pattern and assign to memory layer""" | |
| self.patterns[pattern.pattern_id] = pattern | |
| self._assign_to_layer(pattern) | |
| def retrieve_top_patterns( | |
| self, | |
| niche: str, | |
| platform: Platform, | |
| beat_type: BeatType, | |
| n: int = 5 | |
| ) -> List[AudioPattern]: | |
| """Retrieve top-performing patterns for given context""" | |
| # Filter by context | |
| candidates = [ | |
| p for p in self.patterns.values() | |
| if p.niche == niche and p.platform == platform and p.beat_type == beat_type | |
| ] | |
| # Sort by efficacy score with decay applied | |
| for pattern in candidates: | |
| pattern.apply_decay() | |
| candidates.sort(key=lambda p: p.efficacy_score * p.decay_factor, reverse=True) | |
| # Prioritize HOT patterns | |
| hot_candidates = [p for p in candidates if p.memory_layer == MemoryLayer.HOT] | |
| warm_candidates = [p for p in candidates if p.memory_layer == MemoryLayer.WARM] | |
| result = (hot_candidates + warm_candidates)[:n] | |
| # Add to replay buffer | |
| for pattern in result: | |
| self.replay_buffer.append(pattern) | |
| return result | |
| def update_pattern_performance( | |
| self, | |
| pattern_id: str, | |
| metrics: PerformanceMetrics, | |
| platform: Platform | |
| ): | |
| """Update pattern with new performance data""" | |
| if pattern_id in self.patterns: | |
| pattern = self.patterns[pattern_id] | |
| pattern.update_performance(metrics, platform) | |
| self._assign_to_layer(pattern) | |
| def enforce_diversity(self, recent_pattern_ids: List[str], threshold: int = 3): | |
| """Penalize overused patterns to maintain diversity""" | |
| usage_count = defaultdict(int) | |
| for pid in recent_pattern_ids[-10:]: | |
| usage_count[pid] += 1 | |
| for pid, count in usage_count.items(): | |
| if count >= threshold and pid in self.patterns: | |
| self.patterns[pid].efficacy_score *= 0.8 # Diversity penalty | |
| def _assign_to_layer(self, pattern: AudioPattern): | |
| """Dynamically assign pattern to appropriate memory layer""" | |
| pattern_id = pattern.pattern_id | |
| # Remove from all layers first | |
| self.hot_patterns = [p for p in self.hot_patterns if p != pattern_id] | |
| self.warm_patterns = [p for p in self.warm_patterns if p != pattern_id] | |
| self.cold_patterns = [p for p in self.cold_patterns if p != pattern_id] | |
| # Assign to new layer | |
| if pattern.memory_layer == MemoryLayer.HOT: | |
| self.hot_patterns.append(pattern_id) | |
| elif pattern.memory_layer == MemoryLayer.WARM: | |
| self.warm_patterns.append(pattern_id) | |
| else: | |
| self.cold_patterns.append(pattern_id) | |
| def get_replay_samples(self, n: int = 10) -> List[AudioPattern]: | |
| """Get samples from replay buffer for training""" | |
| if len(self.replay_buffer) < n: | |
| return list(self.replay_buffer) | |
| return list(np.random.choice(list(self.replay_buffer), n, replace=False)) | |
| class AudioReinforcementLoop: | |
| """Main RL system orchestrating all agents and learning""" | |
| def __init__(self): | |
| self.audio_agent = AudioAgent("primary_audio") | |
| self.meta_agent = MetaViralAgent() | |
| self.reward_function = RewardFunction() | |
| self.memory_manager = AudioMemoryManager() | |
| # Performance tracking | |
| self.performance_history = deque(maxlen=1000) | |
| self.recent_states = deque(maxlen=100) | |
| # Engine weights for TTS and voice sync | |
| self.engine_weights = { | |
| 'tts': {}, | |
| 'voice_sync': {} | |
| } | |
| # Platform-specific rules | |
| self.platform_rules = self._initialize_platform_rules() | |
| # Training metrics | |
| self.training_metrics = { | |
| 'total_episodes': 0, | |
| 'avg_reward': 0.0, | |
| 'pattern_success_rate': 0.0, | |
| 'exploration_rate': 0.2 | |
| } | |
| logger.info("AudioReinforcementLoop initialized") | |
| def _initialize_platform_rules(self) -> Dict[Platform, Dict]: | |
| """Platform-specific audio constraints and preferences""" | |
| return { | |
| Platform.TIKTOK: { | |
| 'max_duration': 60, | |
| 'optimal_hook_position': 0.5, # seconds | |
| 'preferred_tempo_range': (120, 160), | |
| 'loop_importance': 0.9 | |
| }, | |
| Platform.YOUTUBE_SHORTS: { | |
| 'max_duration': 60, | |
| 'optimal_hook_position': 1.0, | |
| 'preferred_tempo_range': (100, 150), | |
| 'watch_through_importance': 0.9 | |
| }, | |
| Platform.INSTAGRAM_REELS: { | |
| 'max_duration': 90, | |
| 'optimal_hook_position': 0.8, | |
| 'preferred_tempo_range': (110, 145), | |
| 'share_importance': 0.85 | |
| } | |
| } | |
| def process_video_performance( | |
| self, | |
| pattern_id: str, | |
| metrics: PerformanceMetrics, | |
| state: State, | |
| action: ActionSpace | |
| ) -> float: | |
| """ | |
| Process performance feedback and update RL components. | |
| Returns the calculated reward. | |
| """ | |
| # Update pattern in memory | |
| self.memory_manager.update_pattern_performance( | |
| pattern_id, | |
| metrics, | |
| state.platform | |
| ) | |
| # Get historical patterns for context | |
| pattern_history = self.memory_manager.retrieve_top_patterns( | |
| state.niche, | |
| state.platform, | |
| state.beat_type, | |
| n=10 | |
| ) | |
| # Calculate reward | |
| predicted_metrics = self.meta_agent.predict_engagement(state, action) | |
| reward = self.reward_function.calculate( | |
| metrics, | |
| state.platform, | |
| predicted_metrics, | |
| pattern_history | |
| ) | |
| # Adjust reward with meta-agent multipliers | |
| reward *= self.meta_agent.reward_multipliers.get('trending', 1.0) | |
| reward *= self.meta_agent.reward_multipliers.get(state.platform.value, 1.0) | |
| # Check for platform rule violations | |
| penalties = self._check_platform_violations(state, action, metrics) | |
| reward -= penalties | |
| # Store in performance history | |
| self.performance_history.append((state, metrics)) | |
| self.recent_states.append(state) | |
| # Update audio agent | |
| if len(self.recent_states) > 1: | |
| next_state = self.recent_states[-1] | |
| prev_state = self.recent_states[-2] | |
| self.audio_agent.update(prev_state, action, reward, next_state) | |
| # Periodically adjust meta-agent multipliers | |
| if len(self.performance_history) % 50 == 0: | |
| self.meta_agent.adjust_reward_multipliers(list(self.performance_history)) | |
| # Update training metrics | |
| self._update_training_metrics(reward) | |
| # Check if pattern should be reinforced or penalized | |
| if metrics.views >= 5_000_000: | |
| self._reinforce_pattern(pattern_id, state, action) | |
| elif metrics.views < 100_000 and metrics.completion_rate < 0.3: | |
| self._penalize_pattern(pattern_id) | |
| logger.info(f"Processed performance for pattern {pattern_id}: reward={reward:.3f}, views={metrics.views}") | |
| return reward | |
| def _check_platform_violations(self, state: State, action: ActionSpace, metrics: PerformanceMetrics) -> float: | |
| """Check for platform rule violations and return penalty""" | |
| penalty = 0.0 | |
| rules = self.platform_rules.get(state.platform, {}) | |
| # Check tempo range | |
| tempo_range = rules.get('preferred_tempo_range', (0, 999)) | |
| if not (tempo_range[0] <= state.audio_features.tempo_bpm <= tempo_range[1]): | |
| penalty += 0.15 | |
| # Check beat alignment | |
| if state.audio_features.beat_alignment_error > 0.2: | |
| penalty += 0.2 | |
| # Platform-specific checks | |
| if state.platform == Platform.TIKTOK: | |
| if metrics.loop_frequency < 0.3: | |
| penalty += 0.15 | |
| if metrics.first_3s_retention < 0.5: | |
| penalty += 0.2 | |
| return penalty | |
| def _reinforce_pattern(self, pattern_id: str, state: State, action: ActionSpace): | |
| """Reinforce winning patterns by boosting their weights""" | |
| if pattern_id in self.memory_manager.patterns: | |
| pattern = self.memory_manager.patterns[pattern_id] | |
| pattern.efficacy_score = min(pattern.efficacy_score * 1.2, 1.0) | |
| pattern.memory_layer = MemoryLayer.HOT | |
| self.memory_manager._assign_to_layer(pattern) | |
| # Update engine weights | |
| self._update_engine_weights_from_pattern(pattern, boost=True) | |
| def _penalize_pattern(self, pattern_id: str): | |
| """Penalize underperforming patterns""" | |
| if pattern_id in self.memory_manager.patterns: | |
| pattern = self.memory_manager.patterns[pattern_id] | |
| pattern.efficacy_score *= 0.7 | |
| if pattern.efficacy_score < 0.3: | |
| pattern.memory_layer = MemoryLayer.COLD | |
| self.memory_manager._assign_to_layer(pattern) | |
| def _update_training_metrics(self, reward: float): | |
| """Update overall training statistics""" | |
| self.training_metrics['total_episodes'] += 1 | |
| alpha = 0.1 | |
| self.training_metrics['avg_reward'] = ( | |
| alpha * reward + (1 - alpha) * self.training_metrics['avg_reward'] | |
| ) | |
| self.training_metrics['exploration_rate'] = self.audio_agent.epsilon | |
| # Calculate pattern success rate | |
| if len(self.performance_history) > 0: | |
| recent_successes = sum( | |
| 1 for _, m in list(self.performance_history)[-50:] | |
| if m.views >= 1_000_000 | |
| ) | |
| self.training_metrics['pattern_success_rate'] = recent_successes / min(50, len(self.performance_history)) | |
| def get_optimal_audio_action( | |
| self, | |
| niche: str, | |
| platform: Platform, | |
| beat_type: BeatType, | |
| video_context: Dict[str, Any], | |
| explore: bool = False | |
| ) -> Tuple[ActionSpace, List[AudioPattern]]: | |
| """ | |
| Get optimal audio modifications for a new video. | |
| Returns action to take and relevant historical patterns. | |
| """ | |
| # Retrieve top patterns from memory | |
| top_patterns = self.memory_manager.retrieve_top_patterns( | |
| niche, platform, beat_type, n=5 | |
| ) | |
| if not top_patterns: | |
| logger.warning(f"No patterns found for niche={niche}, platform={platform}, beat={beat_type}") | |
| # Return default safe action | |
| return self._get_default_action(), [] | |
| # Construct state from best pattern | |
| best_pattern = top_patterns[0] | |
| state = State( | |
| audio_features=best_pattern.features, | |
| video_context=video_context, | |
| platform=platform, | |
| niche=niche, | |
| beat_type=beat_type, | |
| historical_patterns=top_patterns, | |
| viewer_projections={'watch_time': 0.6, 'loop_prob': 0.5}, | |
| platform_trends={'trending_score': 0.5} | |
| ) | |
| # Get action from audio agent | |
| action = self.audio_agent.select_action(state, explore=explore) | |
| # Get meta-agent predictions | |
| predictions = self.meta_agent.predict_engagement(state, action) | |
| logger.info(f"Generated optimal action for {niche}/{platform.value}/{beat_type.value}") | |
| logger.info(f"Predicted viral score: {predictions['viral_score']:.3f}") | |
| return action, top_patterns | |
| def get_current_optimal_audio_profile( | |
| self, | |
| niche: str, | |
| platform: Platform, | |
| beat_type: BeatType | |
| ) -> Dict[str, Any]: | |
| """ | |
| API Method: Get current optimal audio profile for given context. | |
| Returns comprehensive audio configuration. | |
| """ | |
| top_patterns = self.memory_manager.retrieve_top_patterns( | |
| niche, platform, beat_type, n=3 | |
| ) | |
| if not top_patterns: | |
| return self._get_default_profile(niche, platform, beat_type) | |
| best_pattern = top_patterns[0] | |
| profile = { | |
| 'pattern_id': best_pattern.pattern_id, | |
| 'efficacy_score': best_pattern.efficacy_score, | |
| 'memory_layer': best_pattern.memory_layer.value, | |
| 'audio_features': { | |
| 'pace_wpm': best_pattern.features.pace_wpm, | |
| 'pitch_variance': best_pattern.features.pitch_variance, | |
| 'emotional_intensity': best_pattern.features.emotional_intensity, | |
| 'tempo_bpm': best_pattern.features.tempo_bpm, | |
| 'beat_alignment_error': best_pattern.features.beat_alignment_error | |
| }, | |
| 'voice_style': best_pattern.voice_style, | |
| 'music_track': best_pattern.music_track, | |
| 'trending_beat': best_pattern.trending_beat, | |
| 'performance_stats': { | |
| 'times_used': best_pattern.times_used, | |
| 'total_views': best_pattern.total_views, | |
| 'avg_viral_score': best_pattern.avg_viral_score | |
| }, | |
| 'engine_weights': self.engine_weights.get(best_pattern.pattern_id, {}), | |
| 'recommendations': self._generate_recommendations(best_pattern, platform) | |
| } | |
| return profile | |
| def update_engine_weights( | |
| self, | |
| pattern_id: Optional[str] = None, | |
| manual_weights: Optional[Dict] = None | |
| ): | |
| """ | |
| API Method: Update TTS and voice sync engine weights. | |
| Can update from a specific pattern or manual configuration. | |
| """ | |
| if manual_weights: | |
| self.engine_weights.update(manual_weights) | |
| logger.info("Updated engine weights manually") | |
| return | |
| if pattern_id and pattern_id in self.memory_manager.patterns: | |
| pattern = self.memory_manager.patterns[pattern_id] | |
| self._update_engine_weights_from_pattern(pattern, boost=True) | |
| logger.info(f"Updated engine weights from pattern {pattern_id}") | |
| else: | |
| # Update from all HOT patterns | |
| for pid in self.memory_manager.hot_patterns: | |
| pattern = self.memory_manager.patterns[pid] | |
| self._update_engine_weights_from_pattern(pattern, boost=True) | |
| logger.info(f"Updated engine weights from {len(self.memory_manager.hot_patterns)} HOT patterns") | |
| def _update_engine_weights_from_pattern(self, pattern: AudioPattern, boost: bool = False): | |
| """Extract and store engine weights from pattern""" | |
| multiplier = 1.2 if boost else 1.0 | |
| weights = { | |
| 'pace_target': pattern.features.pace_wpm * multiplier, | |
| 'pitch_variance_target': pattern.features.pitch_variance, | |
| 'emotional_intensity': pattern.features.emotional_intensity * multiplier, | |
| 'tempo_bpm': pattern.features.tempo_bpm, | |
| 'voice_style': pattern.voice_style, | |
| 'beat_alignment_tolerance': max(0.05, pattern.features.beat_alignment_error - 0.05) | |
| } | |
| self.engine_weights[pattern.pattern_id] = weights | |
| # Update global TTS weights | |
| if 'tts' not in self.engine_weights: | |
| self.engine_weights['tts'] = {} | |
| # Weighted average with existing weights | |
| alpha = 0.3 | |
| for key, value in weights.items(): | |
| if isinstance(value, (int, float)): | |
| current = self.engine_weights['tts'].get(key, value) | |
| self.engine_weights['tts'][key] = alpha * value + (1 - alpha) * current | |
| def _generate_recommendations(self, pattern: AudioPattern, platform: Platform) -> List[str]: | |
| """Generate actionable recommendations based on pattern""" | |
| recommendations = [] | |
| rules = self.platform_rules[platform] | |
| if pattern.features.emotional_intensity > 0.7: | |
| recommendations.append("High emotional intensity working well - maintain energy level") | |
| if pattern.features.beat_alignment_error < 0.1: | |
| recommendations.append("Excellent beat alignment - keep tight synchronization") | |
| if pattern.trending_beat: | |
| recommendations.append("Currently using trending beat - capitalize on trend") | |
| if pattern.features.pace_wpm > 160: | |
| recommendations.append("Fast pace driving engagement - maintain rapid delivery") | |
| return recommendations | |
| def _get_default_action(self) -> ActionSpace: | |
| """Safe default action when no patterns available""" | |
| return ActionSpace( | |
| hook_selection=0, | |
| beat_timing_adjustment=0.0, | |
| volume_modulation=1.0, | |
| pitch_shift=0.0, | |
| voice_modulation="energetic", | |
| transition_type="fade", | |
| effect_intensity=0.5 | |
| ) | |
| def _get_default_profile(self, niche: str, platform: Platform, beat_type: BeatType) -> Dict[str, Any]: | |
| """Default profile when no patterns exist""" | |
| return { | |
| 'pattern_id': 'default', | |
| 'efficacy_score': 0.5, | |
| 'memory_layer': 'warm', | |
| 'audio_features': { | |
| 'pace_wpm': 150, | |
| 'pitch_variance': 0.5, | |
| 'emotional_intensity': 0.6, | |
| 'tempo_bpm': 130, | |
| 'beat_alignment_error': 0.1 | |
| }, | |
| 'voice_style': 'energetic', | |
| 'music_track': None, | |
| 'trending_beat': False, | |
| 'performance_stats': { | |
| 'times_used': 0, | |
| 'total_views': 0, | |
| 'avg_viral_score': 0.0 | |
| }, | |
| 'engine_weights': {}, | |
| 'recommendations': ['No patterns available - using safe defaults'] | |
| } | |
| def train_from_batch(self, batch_data: List[Dict[str, Any]]): | |
| """ | |
| Batch training from historical data. | |
| Each item should contain: state, action, metrics, platform | |
| """ | |
| logger.info(f"Starting batch training with {len(batch_data)} samples") | |
| for item in batch_data: | |
| state = item['state'] | |
| action = item['action'] | |
| metrics = item['metrics'] | |
| pattern_id = item.get('pattern_id', 'unknown') | |
| # Process as if it's new performance data | |
| self.process_video_performance(pattern_id, metrics, state, action) | |
| # Enforce diversity after batch | |
| recent_ids = [item.get('pattern_id', 'unknown') for item in batch_data] | |
| self.memory_manager.enforce_diversity(recent_ids) | |
| logger.info("Batch training complete") | |
| def export_state(self) -> Dict[str, Any]: | |
| """Export complete system state for persistence""" | |
| return { | |
| 'patterns': {pid: asdict(p) for pid, p in self.memory_manager.patterns.items()}, | |
| 'hot_patterns': self.memory_manager.hot_patterns, | |
| 'warm_patterns': self.memory_manager.warm_patterns, | |
| 'cold_patterns': self.memory_manager.cold_patterns, | |
| 'engine_weights': self.engine_weights, | |
| 'training_metrics': self.training_metrics, | |
| 'q_table_size': len(self.audio_agent.q_table), | |
| 'reward_multipliers': self.meta_agent.reward_multipliers | |
| } | |
| def import_state(self, state_data: Dict[str, Any]): | |
| """Import previously exported state""" | |
| # Reconstruct patterns | |
| for pid, pattern_dict in state_data.get('patterns', {}).items(): | |
| # Convert dict back to objects | |
| features = AudioFeatures(**pattern_dict['features']) | |
| platform = Platform(pattern_dict['platform']) | |
| beat_type = BeatType(pattern_dict['beat_type']) | |
| memory_layer = MemoryLayer(pattern_dict['memory_layer']) | |
| pattern = AudioPattern( | |
| pattern_id=pid, | |
| features=features, | |
| niche=pattern_dict['niche'], | |
| platform=platform, | |
| beat_type=beat_type, | |
| voice_style=pattern_dict['voice_style'], | |
| language=pattern_dict['language'], | |
| music_track=pattern_dict.get('music_track'), | |
| trending_beat=pattern_dict['trending_beat'], | |
| times_used=pattern_dict['times_used'], | |
| total_views=pattern_dict['total_views'], | |
| avg_viral_score=pattern_dict['avg_viral_score'], | |
| memory_layer=memory_layer, | |
| efficacy_score=pattern_dict['efficacy_score'] | |
| ) | |
| self.memory_manager.store_pattern(pattern) | |
| # Restore weights and metrics | |
| self.engine_weights = state_data.get('engine_weights', {}) | |
| self.training_metrics = state_data.get('training_metrics', self.training_metrics) | |
| logger.info(f"Imported state with {len(self.memory_manager.patterns)} patterns") | |
| # Example usage and integration points | |
| if __name__ == "__main__": | |
| # Initialize the RL system | |
| rl_system = AudioReinforcementLoop() | |
| # Example: Get optimal audio profile for new video | |
| profile = rl_system.get_current_optimal_audio_profile( | |
| niche="tech_reviews", | |
| platform=Platform.TIKTOK, | |
| beat_type=BeatType.PHONK | |
| ) | |
| print(f"Optimal audio profile: {json.dumps(profile, indent=2, default=str)}") | |
| # Example: Process performance feedback | |
| sample_features = AudioFeatures( | |
| pace_wpm=155, | |
| pitch_variance=0.6, | |
| hook_jumps=3, | |
| pause_timing=[0.5, 1.0, 0.3], | |
| spectral_centroid=2500, | |
| emotional_intensity=0.8, | |
| beat_alignment_error=0.08, | |
| volume_dynamics=0.7, | |
| timbre_complexity=0.65, | |
| tempo_bpm=135, | |
| syllable_timing_variance=0.15 | |
| ) | |
| sample_pattern = AudioPattern( | |
| pattern_id="pattern_001", | |
| features=sample_features, | |
| niche="tech_reviews", | |
| platform=Platform.TIKTOK, | |
| beat_type=BeatType.PHONK, | |
| voice_style="energetic", | |
| language="en", | |
| music_track="trending_phonk_01", | |
| trending_beat=True | |
| ) | |
| rl_system.memory_manager.store_pattern(sample_pattern) | |
| sample_metrics = PerformanceMetrics( | |
| views=6_500_000, | |
| retention_2s=0.82, | |
| completion_rate=0.71, | |
| replay_rate=0.45, | |
| shares=125_000, | |
| saves=89_000, | |
| comments=45_000, | |
| likes=850_000, | |
| watch_through_rate=0.68, | |
| loop_frequency=0.52, | |
| first_3s_retention=0.79, | |
| ctr=0.12 | |
| ) | |
| sample_state = State( | |
| audio_features=sample_features, | |
| video_context={'scene_cuts': 8, 'predicted_ctr': 0.11, 'hook_position': 0.6}, | |
| platform=Platform.TIKTOK, | |
| niche="tech_reviews", | |
| beat_type=BeatType.PHONK, | |
| historical_patterns=[sample_pattern], | |
| viewer_projections={'watch_time': 0.65, 'loop_prob': 0.50}, | |
| platform_trends={'trending_score': 0.75} | |
| ) | |
| sample_action = ActionSpace( | |
| hook_selection=1, | |
| beat_timing_adjustment=0.1, | |
| volume_modulation=1.1, | |
| pitch_shift=0.5, | |
| voice_modulation="energetic", | |
| transition_type="beat_drop", | |
| effect_intensity=0.7 | |
| ) | |
| reward = rl_system.process_video_performance( | |
| pattern_id="pattern_001", | |
| metrics=sample_metrics, | |
| state=sample_state, | |
| action=sample_action | |
| ) | |
| print(f"\nProcessed performance - Reward: {reward:.3f}") | |
| print(f"Training metrics: {json.dumps(rl_system.training_metrics, indent=2)}") | |
| # Update engine weights based on successful pattern | |
| rl_system.update_engine_weights(pattern_id="pattern_001") | |
| # Get optimal action for next video | |
| next_action, relevant_patterns = rl_system.get_optimal_audio_action( | |
| niche="tech_reviews", | |
| platform=Platform.TIKTOK, | |
| beat_type=BeatType.PHONK, | |
| video_context={'scene_cuts': 7, 'predicted_ctr': 0.10, 'hook_position': 0.5} | |
| ) | |
| print(f"\nNext optimal action: {asdict(next_action)}") | |
| print(f"Based on {len(relevant_patterns)} relevant patterns") |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment