Skip to content

Instantly share code, notes, and snippets.

@bogged-broker
Created December 30, 2025 20:07
Show Gist options
  • Select an option

  • Save bogged-broker/793f55a20acea2f64ca6e00af26c2461 to your computer and use it in GitHub Desktop.

Select an option

Save bogged-broker/793f55a20acea2f64ca6e00af26c2461 to your computer and use it in GitHub Desktop.
"""
audio_reinforcement_loop.py
Multi-Agent Reinforcement Learning system for audio virality optimization.
Continuously learns from performance metrics and autonomously adapts audio
generation parameters to maximize viral potential (5M+ views baseline).
Architecture:
- Primary Audio Agent: Optimizes core audio virality patterns
- Visual/Hook Agent: Aligns audio with visual elements
- Meta-Viral Agent: Oversees engagement predictions and reward multipliers
- Real-time feedback integration with platform-specific tuning
"""
import json
import numpy as np
from typing import Dict, List, Tuple, Optional, Any
from dataclasses import dataclass, field, asdict
from datetime import datetime, timedelta
from collections import defaultdict, deque
import hashlib
import logging
from enum import Enum
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
class Platform(Enum):
"""Supported platforms with specific optimization rules"""
TIKTOK = "tiktok"
YOUTUBE_SHORTS = "youtube_shorts"
INSTAGRAM_REELS = "instagram_reels"
class BeatType(Enum):
"""Audio beat patterns"""
TRAP = "trap"
DRILL = "drill"
HYPERPOP = "hyperpop"
PHONK = "phonk"
LOFI = "lofi"
ORCHESTRAL = "orchestral"
ELECTRONIC = "electronic"
CUSTOM = "custom"
class MemoryLayer(Enum):
"""Memory priority tiers"""
HOT = "hot" # Recently viral, actively used
WARM = "warm" # Proven patterns, occasionally used
COLD = "cold" # Historical data, rarely accessed
@dataclass
class AudioFeatures:
"""Comprehensive audio feature representation"""
pace_wpm: float
pitch_variance: float
hook_jumps: int
pause_timing: List[float]
spectral_centroid: float
emotional_intensity: float
beat_alignment_error: float
volume_dynamics: float
timbre_complexity: float
tempo_bpm: float
syllable_timing_variance: float
def to_vector(self) -> np.ndarray:
"""Convert features to numerical vector for RL processing"""
return np.array([
self.pace_wpm,
self.pitch_variance,
float(self.hook_jumps),
np.mean(self.pause_timing) if self.pause_timing else 0.0,
self.spectral_centroid,
self.emotional_intensity,
self.beat_alignment_error,
self.volume_dynamics,
self.timbre_complexity,
self.tempo_bpm,
self.syllable_timing_variance
])
@dataclass
class PerformanceMetrics:
"""Video performance tracking"""
views: int
retention_2s: float # % who watched 2+ seconds
completion_rate: float
replay_rate: float
shares: int
saves: int
comments: int
likes: int
watch_through_rate: float
loop_frequency: float
first_3s_retention: float
ctr: float # Click-through rate for thumbnails
def viral_score(self, platform: Platform) -> float:
"""Calculate platform-specific viral score"""
if platform == Platform.TIKTOK:
# TikTok prioritizes loopability and first 3s retention
return (
self.loop_frequency * 0.35 +
self.first_3s_retention * 0.30 +
self.completion_rate * 0.20 +
min(self.views / 5_000_000, 1.0) * 0.15
)
elif platform == Platform.YOUTUBE_SHORTS:
# YouTube prioritizes watch-through and CTR
return (
self.watch_through_rate * 0.35 +
self.ctr * 0.25 +
self.completion_rate * 0.20 +
min(self.views / 5_000_000, 1.0) * 0.20
)
else: # Instagram Reels
return (
self.shares / max(self.views, 1) * 0.30 +
self.saves / max(self.views, 1) * 0.25 +
self.completion_rate * 0.25 +
min(self.views / 5_000_000, 1.0) * 0.20
)
@dataclass
class AudioPattern:
"""Identified viral audio pattern"""
pattern_id: str
features: AudioFeatures
niche: str
platform: Platform
beat_type: BeatType
voice_style: str
language: str
music_track: Optional[str]
trending_beat: bool
# Performance tracking
times_used: int = 0
total_views: int = 0
avg_viral_score: float = 0.0
last_used: Optional[datetime] = None
# Memory management
memory_layer: MemoryLayer = MemoryLayer.WARM
decay_factor: float = 1.0
efficacy_score: float = 0.0
def update_performance(self, metrics: PerformanceMetrics, platform: Platform):
"""Update pattern performance with new data"""
self.times_used += 1
self.total_views += metrics.views
viral_score = metrics.viral_score(platform)
# Exponential moving average for viral score
alpha = 0.3 # Learning rate
self.avg_viral_score = (
alpha * viral_score + (1 - alpha) * self.avg_viral_score
if self.avg_viral_score > 0 else viral_score
)
self.last_used = datetime.now()
self.efficacy_score = self._calculate_efficacy()
self._update_memory_layer()
def _calculate_efficacy(self) -> float:
"""Calculate pattern efficacy score"""
view_score = min(self.total_views / (5_000_000 * self.times_used), 1.0)
consistency_score = self.avg_viral_score
recency_bonus = 1.2 if self.trending_beat else 1.0
usage_factor = min(self.times_used / 10, 1.0) # Proven patterns score higher
return (view_score * 0.4 + consistency_score * 0.4 + usage_factor * 0.2) * recency_bonus
def _update_memory_layer(self):
"""Dynamically assign memory layer based on performance and recency"""
days_since_use = (datetime.now() - self.last_used).days if self.last_used else 999
if self.efficacy_score > 0.7 and days_since_use < 7:
self.memory_layer = MemoryLayer.HOT
elif self.efficacy_score > 0.5 and days_since_use < 30:
self.memory_layer = MemoryLayer.WARM
else:
self.memory_layer = MemoryLayer.COLD
def apply_decay(self):
"""Apply time-based decay to pattern weights"""
days_since_use = (datetime.now() - self.last_used).days if self.last_used else 999
self.decay_factor = np.exp(-0.05 * days_since_use) # Exponential decay
@dataclass
class ActionSpace:
"""Available audio modification actions"""
hook_selection: int # Index of hook variant to use
beat_timing_adjustment: float # -0.5 to +0.5 seconds
volume_modulation: float # 0.5 to 1.5 multiplier
pitch_shift: float # -2 to +2 semitones
voice_modulation: str # "energetic", "calm", "dramatic", etc.
transition_type: str # "cut", "fade", "beat_drop", etc.
effect_intensity: float # 0.0 to 1.0
def to_vector(self) -> np.ndarray:
"""Convert action to numerical vector"""
voice_map = {"energetic": 1.0, "calm": 0.3, "dramatic": 0.7, "neutral": 0.5}
transition_map = {"cut": 1.0, "fade": 0.5, "beat_drop": 0.8, "none": 0.0}
return np.array([
float(self.hook_selection),
self.beat_timing_adjustment,
self.volume_modulation,
self.pitch_shift,
voice_map.get(self.voice_modulation, 0.5),
transition_map.get(self.transition_type, 0.5),
self.effect_intensity
])
@dataclass
class State:
"""Complete RL state representation"""
audio_features: AudioFeatures
video_context: Dict[str, Any]
platform: Platform
niche: str
beat_type: BeatType
historical_patterns: List[AudioPattern]
viewer_projections: Dict[str, float]
platform_trends: Dict[str, float]
def to_vector(self) -> np.ndarray:
"""Convert state to numerical vector for neural network input"""
audio_vec = self.audio_features.to_vector()
# Video context features
scene_cuts = self.video_context.get('scene_cuts', 0)
predicted_ctr = self.video_context.get('predicted_ctr', 0.5)
hook_position = self.video_context.get('hook_position', 0.0)
# Viewer projections
predicted_watch_time = self.viewer_projections.get('watch_time', 0.5)
loop_probability = self.viewer_projections.get('loop_prob', 0.5)
# Platform trends
trending_score = self.platform_trends.get('trending_score', 0.5)
context_vec = np.array([
float(scene_cuts),
predicted_ctr,
hook_position,
predicted_watch_time,
loop_probability,
trending_score
])
return np.concatenate([audio_vec, context_vec])
class RewardFunction:
"""Dynamic reward calculation for RL agents"""
def __init__(self):
self.weights = {
'views': 0.25,
'retention': 0.25,
'engagement': 0.25,
'loopability': 0.25
}
self.platform_multipliers = {
Platform.TIKTOK: {'loopability': 1.5, 'first_3s': 1.3},
Platform.YOUTUBE_SHORTS: {'watch_through': 1.4, 'ctr': 1.3},
Platform.INSTAGRAM_REELS: {'shares': 1.5, 'saves': 1.4}
}
def calculate(
self,
metrics: PerformanceMetrics,
platform: Platform,
predicted_metrics: Dict[str, float],
pattern_history: List[AudioPattern]
) -> float:
"""Calculate reward with dynamic weighting and early boost"""
# Base viral score
viral_score = metrics.viral_score(platform)
# View threshold reward
view_reward = self._view_threshold_reward(metrics.views)
# Early retention boost
retention_boost = self._early_retention_boost(metrics.retention_2s, metrics.first_3s_retention)
# Platform-specific multipliers
platform_bonus = self._platform_specific_bonus(metrics, platform)
# Anti-viral penalties
penalties = self._calculate_penalties(metrics, pattern_history)
# Prediction accuracy bonus
prediction_bonus = self._prediction_accuracy(metrics, predicted_metrics)
total_reward = (
viral_score * self.weights['views'] * view_reward +
retention_boost * self.weights['retention'] +
platform_bonus * self.weights['engagement'] +
prediction_bonus * self.weights['loopability'] -
penalties
)
return max(total_reward, 0.0)
def _view_threshold_reward(self, views: int) -> float:
"""Reward based on view milestones"""
if views >= 10_000_000:
return 2.0
elif views >= 5_000_000:
return 1.5
elif views >= 1_000_000:
return 1.2
elif views >= 500_000:
return 1.0
else:
return 0.5
def _early_retention_boost(self, retention_2s: float, retention_3s: float) -> float:
"""Bonus for strong early retention"""
if retention_3s > 0.8:
return 1.5
elif retention_2s > 0.7:
return 1.2
else:
return 1.0
def _platform_specific_bonus(self, metrics: PerformanceMetrics, platform: Platform) -> float:
"""Apply platform-specific engagement multipliers"""
multipliers = self.platform_multipliers.get(platform, {})
bonus = 0.0
if platform == Platform.TIKTOK:
bonus += metrics.loop_frequency * multipliers.get('loopability', 1.0)
bonus += metrics.first_3s_retention * multipliers.get('first_3s', 1.0)
elif platform == Platform.YOUTUBE_SHORTS:
bonus += metrics.watch_through_rate * multipliers.get('watch_through', 1.0)
bonus += metrics.ctr * multipliers.get('ctr', 1.0)
return bonus
def _calculate_penalties(self, metrics: PerformanceMetrics, pattern_history: List[AudioPattern]) -> float:
"""Penalize anti-viral patterns"""
penalty = 0.0
# Low completion penalty
if metrics.completion_rate < 0.3:
penalty += 0.3
# Overused pattern penalty (audience fatigue)
if pattern_history:
recent_usage = sum(1 for p in pattern_history[-10:] if p.times_used > 5)
if recent_usage > 7:
penalty += 0.2
# Poor engagement penalty
engagement_rate = (metrics.likes + metrics.shares + metrics.comments) / max(metrics.views, 1)
if engagement_rate < 0.01:
penalty += 0.15
return penalty
def _prediction_accuracy(self, actual: PerformanceMetrics, predicted: Dict[str, float]) -> float:
"""Bonus for accurate predictions"""
if not predicted:
return 0.5
actual_watch = actual.watch_through_rate
predicted_watch = predicted.get('watch_time', 0.5)
accuracy = 1.0 - abs(actual_watch - predicted_watch)
return accuracy * 0.5
class AudioAgent:
"""Primary audio optimization agent"""
def __init__(self, agent_id: str):
self.agent_id = agent_id
self.q_table = defaultdict(lambda: np.random.randn(7) * 0.01) # 7 action dimensions
self.learning_rate = 0.01
self.discount_factor = 0.95
self.epsilon = 0.2 # Exploration rate
self.episode_count = 0
def select_action(self, state: State, explore: bool = True) -> ActionSpace:
"""Select audio modification action using epsilon-greedy policy"""
state_key = self._state_to_key(state)
if explore and np.random.random() < self.epsilon:
# Exploration: random action
return self._random_action()
else:
# Exploitation: best known action
q_values = self.q_table[state_key]
return self._q_values_to_action(q_values)
def update(self, state: State, action: ActionSpace, reward: float, next_state: State):
"""Update Q-values using TD learning"""
state_key = self._state_to_key(state)
next_state_key = self._state_to_key(next_state)
action_vec = action.to_vector()
current_q = self.q_table[state_key]
next_q = self.q_table[next_state_key]
# TD update: Q(s,a) = Q(s,a) + α[r + γ max Q(s',a') - Q(s,a)]
td_target = reward + self.discount_factor * np.max(next_q)
td_error = td_target - np.dot(current_q, action_vec)
self.q_table[state_key] += self.learning_rate * td_error * action_vec
self.episode_count += 1
self._decay_epsilon()
def _state_to_key(self, state: State) -> str:
"""Convert state to hashable key"""
state_vec = state.to_vector()
# Discretize continuous values for Q-table indexing
discretized = tuple(np.round(state_vec, 2))
return hashlib.md5(str(discretized).encode()).hexdigest()[:16]
def _random_action(self) -> ActionSpace:
"""Generate random exploration action"""
return ActionSpace(
hook_selection=np.random.randint(0, 5),
beat_timing_adjustment=np.random.uniform(-0.5, 0.5),
volume_modulation=np.random.uniform(0.7, 1.3),
pitch_shift=np.random.uniform(-1.5, 1.5),
voice_modulation=np.random.choice(["energetic", "calm", "dramatic", "neutral"]),
transition_type=np.random.choice(["cut", "fade", "beat_drop", "none"]),
effect_intensity=np.random.uniform(0.2, 0.9)
)
def _q_values_to_action(self, q_values: np.ndarray) -> ActionSpace:
"""Convert Q-values to action space"""
return ActionSpace(
hook_selection=int(abs(q_values[0]) % 5),
beat_timing_adjustment=np.clip(q_values[1], -0.5, 0.5),
volume_modulation=np.clip(q_values[2], 0.5, 1.5),
pitch_shift=np.clip(q_values[3], -2.0, 2.0),
voice_modulation=["energetic", "calm", "dramatic", "neutral"][int(abs(q_values[4]) % 4)],
transition_type=["cut", "fade", "beat_drop", "none"][int(abs(q_values[5]) % 4)],
effect_intensity=np.clip(q_values[6], 0.0, 1.0)
)
def _decay_epsilon(self):
"""Gradually reduce exploration rate"""
self.epsilon = max(0.05, self.epsilon * 0.9995)
class MetaViralAgent:
"""Meta-agent for overseeing engagement predictions and reward multipliers"""
def __init__(self):
self.prediction_history = deque(maxlen=1000)
self.reward_multipliers = {
'trending': 1.0,
'niche': 1.0,
'platform': 1.0
}
def predict_engagement(self, state: State, action: ActionSpace) -> Dict[str, float]:
"""Predict engagement metrics for state-action pair"""
# Simple prediction based on historical patterns
predictions = {
'views': self._predict_views(state, action),
'watch_time': self._predict_watch_time(state),
'loop_prob': self._predict_loop_probability(state, action),
'viral_score': self._predict_viral_score(state, action)
}
return predictions
def adjust_reward_multipliers(self, recent_performance: List[Tuple[State, PerformanceMetrics]]):
"""Dynamically adjust reward multipliers based on recent trends"""
if len(recent_performance) < 10:
return
# Analyze trending patterns
trending_videos = [p for s, p in recent_performance if s.platform_trends.get('trending_score', 0) > 0.7]
if len(trending_videos) >= 5:
avg_trending_score = np.mean([p.viral_score(s.platform) for s, p in recent_performance if s.platform_trends.get('trending_score', 0) > 0.7])
self.reward_multipliers['trending'] = 1.0 + (avg_trending_score - 0.5) * 0.5
# Adjust platform multipliers
platform_scores = defaultdict(list)
for state, metrics in recent_performance:
platform_scores[state.platform].append(metrics.viral_score(state.platform))
for platform, scores in platform_scores.items():
avg_score = np.mean(scores)
self.reward_multipliers[platform.value] = 1.0 + (avg_score - 0.5) * 0.3
def _predict_views(self, state: State, action: ActionSpace) -> float:
"""Predict view count based on state and action"""
# Simplified prediction model
base_views = 1_000_000
feature_boost = state.audio_features.emotional_intensity * 0.5
platform_factor = 1.2 if state.platform == Platform.TIKTOK else 1.0
return base_views * (1 + feature_boost) * platform_factor
def _predict_watch_time(self, state: State) -> float:
"""Predict watch-through rate"""
return state.viewer_projections.get('watch_time', 0.5)
def _predict_loop_probability(self, state: State, action: ActionSpace) -> float:
"""Predict likelihood of video loops"""
hook_quality = 0.7 if action.hook_selection < 2 else 0.5
beat_alignment = 1.0 - state.audio_features.beat_alignment_error
return (hook_quality + beat_alignment) / 2.0
def _predict_viral_score(self, state: State, action: ActionSpace) -> float:
"""Overall viral potential prediction"""
predictions = {
'views': self._predict_views(state, action),
'watch_time': self._predict_watch_time(state),
'loop_prob': self._predict_loop_probability(state, action)
}
return (predictions['watch_time'] * 0.4 + predictions['loop_prob'] * 0.6)
class AudioMemoryManager:
"""Manages audio patterns with HOT/WARM/COLD memory layers"""
def __init__(self):
self.patterns: Dict[str, AudioPattern] = {}
self.hot_patterns: List[str] = []
self.warm_patterns: List[str] = []
self.cold_patterns: List[str] = []
self.replay_buffer = deque(maxlen=100)
def store_pattern(self, pattern: AudioPattern):
"""Store audio pattern and assign to memory layer"""
self.patterns[pattern.pattern_id] = pattern
self._assign_to_layer(pattern)
def retrieve_top_patterns(
self,
niche: str,
platform: Platform,
beat_type: BeatType,
n: int = 5
) -> List[AudioPattern]:
"""Retrieve top-performing patterns for given context"""
# Filter by context
candidates = [
p for p in self.patterns.values()
if p.niche == niche and p.platform == platform and p.beat_type == beat_type
]
# Sort by efficacy score with decay applied
for pattern in candidates:
pattern.apply_decay()
candidates.sort(key=lambda p: p.efficacy_score * p.decay_factor, reverse=True)
# Prioritize HOT patterns
hot_candidates = [p for p in candidates if p.memory_layer == MemoryLayer.HOT]
warm_candidates = [p for p in candidates if p.memory_layer == MemoryLayer.WARM]
result = (hot_candidates + warm_candidates)[:n]
# Add to replay buffer
for pattern in result:
self.replay_buffer.append(pattern)
return result
def update_pattern_performance(
self,
pattern_id: str,
metrics: PerformanceMetrics,
platform: Platform
):
"""Update pattern with new performance data"""
if pattern_id in self.patterns:
pattern = self.patterns[pattern_id]
pattern.update_performance(metrics, platform)
self._assign_to_layer(pattern)
def enforce_diversity(self, recent_pattern_ids: List[str], threshold: int = 3):
"""Penalize overused patterns to maintain diversity"""
usage_count = defaultdict(int)
for pid in recent_pattern_ids[-10:]:
usage_count[pid] += 1
for pid, count in usage_count.items():
if count >= threshold and pid in self.patterns:
self.patterns[pid].efficacy_score *= 0.8 # Diversity penalty
def _assign_to_layer(self, pattern: AudioPattern):
"""Dynamically assign pattern to appropriate memory layer"""
pattern_id = pattern.pattern_id
# Remove from all layers first
self.hot_patterns = [p for p in self.hot_patterns if p != pattern_id]
self.warm_patterns = [p for p in self.warm_patterns if p != pattern_id]
self.cold_patterns = [p for p in self.cold_patterns if p != pattern_id]
# Assign to new layer
if pattern.memory_layer == MemoryLayer.HOT:
self.hot_patterns.append(pattern_id)
elif pattern.memory_layer == MemoryLayer.WARM:
self.warm_patterns.append(pattern_id)
else:
self.cold_patterns.append(pattern_id)
def get_replay_samples(self, n: int = 10) -> List[AudioPattern]:
"""Get samples from replay buffer for training"""
if len(self.replay_buffer) < n:
return list(self.replay_buffer)
return list(np.random.choice(list(self.replay_buffer), n, replace=False))
class AudioReinforcementLoop:
"""Main RL system orchestrating all agents and learning"""
def __init__(self):
self.audio_agent = AudioAgent("primary_audio")
self.meta_agent = MetaViralAgent()
self.reward_function = RewardFunction()
self.memory_manager = AudioMemoryManager()
# Performance tracking
self.performance_history = deque(maxlen=1000)
self.recent_states = deque(maxlen=100)
# Engine weights for TTS and voice sync
self.engine_weights = {
'tts': {},
'voice_sync': {}
}
# Platform-specific rules
self.platform_rules = self._initialize_platform_rules()
# Training metrics
self.training_metrics = {
'total_episodes': 0,
'avg_reward': 0.0,
'pattern_success_rate': 0.0,
'exploration_rate': 0.2
}
logger.info("AudioReinforcementLoop initialized")
def _initialize_platform_rules(self) -> Dict[Platform, Dict]:
"""Platform-specific audio constraints and preferences"""
return {
Platform.TIKTOK: {
'max_duration': 60,
'optimal_hook_position': 0.5, # seconds
'preferred_tempo_range': (120, 160),
'loop_importance': 0.9
},
Platform.YOUTUBE_SHORTS: {
'max_duration': 60,
'optimal_hook_position': 1.0,
'preferred_tempo_range': (100, 150),
'watch_through_importance': 0.9
},
Platform.INSTAGRAM_REELS: {
'max_duration': 90,
'optimal_hook_position': 0.8,
'preferred_tempo_range': (110, 145),
'share_importance': 0.85
}
}
def process_video_performance(
self,
pattern_id: str,
metrics: PerformanceMetrics,
state: State,
action: ActionSpace
) -> float:
"""
Process performance feedback and update RL components.
Returns the calculated reward.
"""
# Update pattern in memory
self.memory_manager.update_pattern_performance(
pattern_id,
metrics,
state.platform
)
# Get historical patterns for context
pattern_history = self.memory_manager.retrieve_top_patterns(
state.niche,
state.platform,
state.beat_type,
n=10
)
# Calculate reward
predicted_metrics = self.meta_agent.predict_engagement(state, action)
reward = self.reward_function.calculate(
metrics,
state.platform,
predicted_metrics,
pattern_history
)
# Adjust reward with meta-agent multipliers
reward *= self.meta_agent.reward_multipliers.get('trending', 1.0)
reward *= self.meta_agent.reward_multipliers.get(state.platform.value, 1.0)
# Check for platform rule violations
penalties = self._check_platform_violations(state, action, metrics)
reward -= penalties
# Store in performance history
self.performance_history.append((state, metrics))
self.recent_states.append(state)
# Update audio agent
if len(self.recent_states) > 1:
next_state = self.recent_states[-1]
prev_state = self.recent_states[-2]
self.audio_agent.update(prev_state, action, reward, next_state)
# Periodically adjust meta-agent multipliers
if len(self.performance_history) % 50 == 0:
self.meta_agent.adjust_reward_multipliers(list(self.performance_history))
# Update training metrics
self._update_training_metrics(reward)
# Check if pattern should be reinforced or penalized
if metrics.views >= 5_000_000:
self._reinforce_pattern(pattern_id, state, action)
elif metrics.views < 100_000 and metrics.completion_rate < 0.3:
self._penalize_pattern(pattern_id)
logger.info(f"Processed performance for pattern {pattern_id}: reward={reward:.3f}, views={metrics.views}")
return reward
def _check_platform_violations(self, state: State, action: ActionSpace, metrics: PerformanceMetrics) -> float:
"""Check for platform rule violations and return penalty"""
penalty = 0.0
rules = self.platform_rules.get(state.platform, {})
# Check tempo range
tempo_range = rules.get('preferred_tempo_range', (0, 999))
if not (tempo_range[0] <= state.audio_features.tempo_bpm <= tempo_range[1]):
penalty += 0.15
# Check beat alignment
if state.audio_features.beat_alignment_error > 0.2:
penalty += 0.2
# Platform-specific checks
if state.platform == Platform.TIKTOK:
if metrics.loop_frequency < 0.3:
penalty += 0.15
if metrics.first_3s_retention < 0.5:
penalty += 0.2
return penalty
def _reinforce_pattern(self, pattern_id: str, state: State, action: ActionSpace):
"""Reinforce winning patterns by boosting their weights"""
if pattern_id in self.memory_manager.patterns:
pattern = self.memory_manager.patterns[pattern_id]
pattern.efficacy_score = min(pattern.efficacy_score * 1.2, 1.0)
pattern.memory_layer = MemoryLayer.HOT
self.memory_manager._assign_to_layer(pattern)
# Update engine weights
self._update_engine_weights_from_pattern(pattern, boost=True)
def _penalize_pattern(self, pattern_id: str):
"""Penalize underperforming patterns"""
if pattern_id in self.memory_manager.patterns:
pattern = self.memory_manager.patterns[pattern_id]
pattern.efficacy_score *= 0.7
if pattern.efficacy_score < 0.3:
pattern.memory_layer = MemoryLayer.COLD
self.memory_manager._assign_to_layer(pattern)
def _update_training_metrics(self, reward: float):
"""Update overall training statistics"""
self.training_metrics['total_episodes'] += 1
alpha = 0.1
self.training_metrics['avg_reward'] = (
alpha * reward + (1 - alpha) * self.training_metrics['avg_reward']
)
self.training_metrics['exploration_rate'] = self.audio_agent.epsilon
# Calculate pattern success rate
if len(self.performance_history) > 0:
recent_successes = sum(
1 for _, m in list(self.performance_history)[-50:]
if m.views >= 1_000_000
)
self.training_metrics['pattern_success_rate'] = recent_successes / min(50, len(self.performance_history))
def get_optimal_audio_action(
self,
niche: str,
platform: Platform,
beat_type: BeatType,
video_context: Dict[str, Any],
explore: bool = False
) -> Tuple[ActionSpace, List[AudioPattern]]:
"""
Get optimal audio modifications for a new video.
Returns action to take and relevant historical patterns.
"""
# Retrieve top patterns from memory
top_patterns = self.memory_manager.retrieve_top_patterns(
niche, platform, beat_type, n=5
)
if not top_patterns:
logger.warning(f"No patterns found for niche={niche}, platform={platform}, beat={beat_type}")
# Return default safe action
return self._get_default_action(), []
# Construct state from best pattern
best_pattern = top_patterns[0]
state = State(
audio_features=best_pattern.features,
video_context=video_context,
platform=platform,
niche=niche,
beat_type=beat_type,
historical_patterns=top_patterns,
viewer_projections={'watch_time': 0.6, 'loop_prob': 0.5},
platform_trends={'trending_score': 0.5}
)
# Get action from audio agent
action = self.audio_agent.select_action(state, explore=explore)
# Get meta-agent predictions
predictions = self.meta_agent.predict_engagement(state, action)
logger.info(f"Generated optimal action for {niche}/{platform.value}/{beat_type.value}")
logger.info(f"Predicted viral score: {predictions['viral_score']:.3f}")
return action, top_patterns
def get_current_optimal_audio_profile(
self,
niche: str,
platform: Platform,
beat_type: BeatType
) -> Dict[str, Any]:
"""
API Method: Get current optimal audio profile for given context.
Returns comprehensive audio configuration.
"""
top_patterns = self.memory_manager.retrieve_top_patterns(
niche, platform, beat_type, n=3
)
if not top_patterns:
return self._get_default_profile(niche, platform, beat_type)
best_pattern = top_patterns[0]
profile = {
'pattern_id': best_pattern.pattern_id,
'efficacy_score': best_pattern.efficacy_score,
'memory_layer': best_pattern.memory_layer.value,
'audio_features': {
'pace_wpm': best_pattern.features.pace_wpm,
'pitch_variance': best_pattern.features.pitch_variance,
'emotional_intensity': best_pattern.features.emotional_intensity,
'tempo_bpm': best_pattern.features.tempo_bpm,
'beat_alignment_error': best_pattern.features.beat_alignment_error
},
'voice_style': best_pattern.voice_style,
'music_track': best_pattern.music_track,
'trending_beat': best_pattern.trending_beat,
'performance_stats': {
'times_used': best_pattern.times_used,
'total_views': best_pattern.total_views,
'avg_viral_score': best_pattern.avg_viral_score
},
'engine_weights': self.engine_weights.get(best_pattern.pattern_id, {}),
'recommendations': self._generate_recommendations(best_pattern, platform)
}
return profile
def update_engine_weights(
self,
pattern_id: Optional[str] = None,
manual_weights: Optional[Dict] = None
):
"""
API Method: Update TTS and voice sync engine weights.
Can update from a specific pattern or manual configuration.
"""
if manual_weights:
self.engine_weights.update(manual_weights)
logger.info("Updated engine weights manually")
return
if pattern_id and pattern_id in self.memory_manager.patterns:
pattern = self.memory_manager.patterns[pattern_id]
self._update_engine_weights_from_pattern(pattern, boost=True)
logger.info(f"Updated engine weights from pattern {pattern_id}")
else:
# Update from all HOT patterns
for pid in self.memory_manager.hot_patterns:
pattern = self.memory_manager.patterns[pid]
self._update_engine_weights_from_pattern(pattern, boost=True)
logger.info(f"Updated engine weights from {len(self.memory_manager.hot_patterns)} HOT patterns")
def _update_engine_weights_from_pattern(self, pattern: AudioPattern, boost: bool = False):
"""Extract and store engine weights from pattern"""
multiplier = 1.2 if boost else 1.0
weights = {
'pace_target': pattern.features.pace_wpm * multiplier,
'pitch_variance_target': pattern.features.pitch_variance,
'emotional_intensity': pattern.features.emotional_intensity * multiplier,
'tempo_bpm': pattern.features.tempo_bpm,
'voice_style': pattern.voice_style,
'beat_alignment_tolerance': max(0.05, pattern.features.beat_alignment_error - 0.05)
}
self.engine_weights[pattern.pattern_id] = weights
# Update global TTS weights
if 'tts' not in self.engine_weights:
self.engine_weights['tts'] = {}
# Weighted average with existing weights
alpha = 0.3
for key, value in weights.items():
if isinstance(value, (int, float)):
current = self.engine_weights['tts'].get(key, value)
self.engine_weights['tts'][key] = alpha * value + (1 - alpha) * current
def _generate_recommendations(self, pattern: AudioPattern, platform: Platform) -> List[str]:
"""Generate actionable recommendations based on pattern"""
recommendations = []
rules = self.platform_rules[platform]
if pattern.features.emotional_intensity > 0.7:
recommendations.append("High emotional intensity working well - maintain energy level")
if pattern.features.beat_alignment_error < 0.1:
recommendations.append("Excellent beat alignment - keep tight synchronization")
if pattern.trending_beat:
recommendations.append("Currently using trending beat - capitalize on trend")
if pattern.features.pace_wpm > 160:
recommendations.append("Fast pace driving engagement - maintain rapid delivery")
return recommendations
def _get_default_action(self) -> ActionSpace:
"""Safe default action when no patterns available"""
return ActionSpace(
hook_selection=0,
beat_timing_adjustment=0.0,
volume_modulation=1.0,
pitch_shift=0.0,
voice_modulation="energetic",
transition_type="fade",
effect_intensity=0.5
)
def _get_default_profile(self, niche: str, platform: Platform, beat_type: BeatType) -> Dict[str, Any]:
"""Default profile when no patterns exist"""
return {
'pattern_id': 'default',
'efficacy_score': 0.5,
'memory_layer': 'warm',
'audio_features': {
'pace_wpm': 150,
'pitch_variance': 0.5,
'emotional_intensity': 0.6,
'tempo_bpm': 130,
'beat_alignment_error': 0.1
},
'voice_style': 'energetic',
'music_track': None,
'trending_beat': False,
'performance_stats': {
'times_used': 0,
'total_views': 0,
'avg_viral_score': 0.0
},
'engine_weights': {},
'recommendations': ['No patterns available - using safe defaults']
}
def train_from_batch(self, batch_data: List[Dict[str, Any]]):
"""
Batch training from historical data.
Each item should contain: state, action, metrics, platform
"""
logger.info(f"Starting batch training with {len(batch_data)} samples")
for item in batch_data:
state = item['state']
action = item['action']
metrics = item['metrics']
pattern_id = item.get('pattern_id', 'unknown')
# Process as if it's new performance data
self.process_video_performance(pattern_id, metrics, state, action)
# Enforce diversity after batch
recent_ids = [item.get('pattern_id', 'unknown') for item in batch_data]
self.memory_manager.enforce_diversity(recent_ids)
logger.info("Batch training complete")
def export_state(self) -> Dict[str, Any]:
"""Export complete system state for persistence"""
return {
'patterns': {pid: asdict(p) for pid, p in self.memory_manager.patterns.items()},
'hot_patterns': self.memory_manager.hot_patterns,
'warm_patterns': self.memory_manager.warm_patterns,
'cold_patterns': self.memory_manager.cold_patterns,
'engine_weights': self.engine_weights,
'training_metrics': self.training_metrics,
'q_table_size': len(self.audio_agent.q_table),
'reward_multipliers': self.meta_agent.reward_multipliers
}
def import_state(self, state_data: Dict[str, Any]):
"""Import previously exported state"""
# Reconstruct patterns
for pid, pattern_dict in state_data.get('patterns', {}).items():
# Convert dict back to objects
features = AudioFeatures(**pattern_dict['features'])
platform = Platform(pattern_dict['platform'])
beat_type = BeatType(pattern_dict['beat_type'])
memory_layer = MemoryLayer(pattern_dict['memory_layer'])
pattern = AudioPattern(
pattern_id=pid,
features=features,
niche=pattern_dict['niche'],
platform=platform,
beat_type=beat_type,
voice_style=pattern_dict['voice_style'],
language=pattern_dict['language'],
music_track=pattern_dict.get('music_track'),
trending_beat=pattern_dict['trending_beat'],
times_used=pattern_dict['times_used'],
total_views=pattern_dict['total_views'],
avg_viral_score=pattern_dict['avg_viral_score'],
memory_layer=memory_layer,
efficacy_score=pattern_dict['efficacy_score']
)
self.memory_manager.store_pattern(pattern)
# Restore weights and metrics
self.engine_weights = state_data.get('engine_weights', {})
self.training_metrics = state_data.get('training_metrics', self.training_metrics)
logger.info(f"Imported state with {len(self.memory_manager.patterns)} patterns")
# Example usage and integration points
if __name__ == "__main__":
# Initialize the RL system
rl_system = AudioReinforcementLoop()
# Example: Get optimal audio profile for new video
profile = rl_system.get_current_optimal_audio_profile(
niche="tech_reviews",
platform=Platform.TIKTOK,
beat_type=BeatType.PHONK
)
print(f"Optimal audio profile: {json.dumps(profile, indent=2, default=str)}")
# Example: Process performance feedback
sample_features = AudioFeatures(
pace_wpm=155,
pitch_variance=0.6,
hook_jumps=3,
pause_timing=[0.5, 1.0, 0.3],
spectral_centroid=2500,
emotional_intensity=0.8,
beat_alignment_error=0.08,
volume_dynamics=0.7,
timbre_complexity=0.65,
tempo_bpm=135,
syllable_timing_variance=0.15
)
sample_pattern = AudioPattern(
pattern_id="pattern_001",
features=sample_features,
niche="tech_reviews",
platform=Platform.TIKTOK,
beat_type=BeatType.PHONK,
voice_style="energetic",
language="en",
music_track="trending_phonk_01",
trending_beat=True
)
rl_system.memory_manager.store_pattern(sample_pattern)
sample_metrics = PerformanceMetrics(
views=6_500_000,
retention_2s=0.82,
completion_rate=0.71,
replay_rate=0.45,
shares=125_000,
saves=89_000,
comments=45_000,
likes=850_000,
watch_through_rate=0.68,
loop_frequency=0.52,
first_3s_retention=0.79,
ctr=0.12
)
sample_state = State(
audio_features=sample_features,
video_context={'scene_cuts': 8, 'predicted_ctr': 0.11, 'hook_position': 0.6},
platform=Platform.TIKTOK,
niche="tech_reviews",
beat_type=BeatType.PHONK,
historical_patterns=[sample_pattern],
viewer_projections={'watch_time': 0.65, 'loop_prob': 0.50},
platform_trends={'trending_score': 0.75}
)
sample_action = ActionSpace(
hook_selection=1,
beat_timing_adjustment=0.1,
volume_modulation=1.1,
pitch_shift=0.5,
voice_modulation="energetic",
transition_type="beat_drop",
effect_intensity=0.7
)
reward = rl_system.process_video_performance(
pattern_id="pattern_001",
metrics=sample_metrics,
state=sample_state,
action=sample_action
)
print(f"\nProcessed performance - Reward: {reward:.3f}")
print(f"Training metrics: {json.dumps(rl_system.training_metrics, indent=2)}")
# Update engine weights based on successful pattern
rl_system.update_engine_weights(pattern_id="pattern_001")
# Get optimal action for next video
next_action, relevant_patterns = rl_system.get_optimal_audio_action(
niche="tech_reviews",
platform=Platform.TIKTOK,
beat_type=BeatType.PHONK,
video_context={'scene_cuts': 7, 'predicted_ctr': 0.10, 'hook_position': 0.5}
)
print(f"\nNext optimal action: {asdict(next_action)}")
print(f"Based on {len(relevant_patterns)} relevant patterns")
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment