Created
June 11, 2014 23:56
-
-
Save bogsio/ce34d7f5583af8676aa9 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import string | |
import collections | |
from nltk import word_tokenize | |
from nltk.stem import PorterStemmer | |
from nltk.corpus import stopwords | |
from sklearn.cluster import KMeans | |
from sklearn.feature_extraction.text import TfidfVectorizer | |
from pprint import pprint | |
def process_text(text, stem=True): | |
""" Tokenize text and stem words removing punctuation """ | |
text = text.translate(string.punctuation) | |
tokens = word_tokenize(text) | |
if stem: | |
stemmer = PorterStemmer() | |
tokens = [stemmer.stem(t) for t in tokens] | |
return tokens | |
def cluster_texts(texts, clusters=3): | |
""" Transform texts to Tf-Idf coordinates and cluster texts using K-Means """ | |
vectorizer = TfidfVectorizer(tokenizer=process_text, | |
stop_words=stopwords.words('english'), | |
max_df=0.5, | |
min_df=0.1, | |
lowercase=True) | |
tfidf_model = vectorizer.fit_transform(texts) | |
km_model = KMeans(n_clusters=clusters) | |
km_model.fit(tfidf_model) | |
clustering = collections.defaultdict(list) | |
for idx, label in enumerate(km_model.labels_): | |
clustering[label].append(idx) | |
return clustering | |
if __name__ == "__main__": | |
articles = [...] | |
clusters = cluster_texts(articles, 7) | |
pprint(dict(clusters)) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment