open import Data.Bool
open import Data.Unit
open import Data.Empty
open import Cubical.Core.Everything
ty : Bool → Set
ty false = ⊥
ty true = ⊤
ex : (b₁ b₂ : Bool)(p : b₁ ≡ b₂)(e₁ : ty b₁)(e₂ : ty b₂) → PathP (λ i → ty (p i)) e₁ e₂
ex true true p tt tt i = {! tt !}
I would expect this proof to go though.. but instead I get this error
⊤ !=< ty (p i)
when checking that the expression tt has type ty (p i)
Why doesn't ty (p i)
reduce to ⊤
in this case?
p : true ≡ true
in this hole and p i0
normalizes to true
..
https://agda.zulipchat.com/#narrow/stream/260790-cubical/topic/.E2.9C.94.20Stuck.20Proof/near/283197935