Created
July 26, 2022 16:32
-
-
Save bond15/15a7ba3a6158da9ee86e6d7614f1ab53 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
module Multiverse where | |
module types where | |
open import Data.Nat | |
open import Data.String | |
open import Data.Bool | |
open import Data.Product | |
data Typeβ : Set where | |
π π π€ : Typeβ | |
Elβ : Typeβ β Set | |
Elβ π = Bool | |
Elβ π = β | |
Elβ π€ = String | |
data Typeβ : Set where | |
π π π€ : Typeβ | |
_&_ _β_ : Typeβ β Typeβ β Typeβ | |
Elβ : Typeβ β Set | |
Elβ π = Bool | |
Elβ π = β | |
Elβ π€ = String | |
Elβ (x & y) = Elβ x Γ Elβ y | |
Elβ (x β y) = Elβ x β Elβ y | |
module univ where | |
-- note this is equivalent to Poly | |
-- Poly can be seen as a datatype and a universe.. | |
record Univ : Setβ where | |
field | |
U : Set | |
El : U β Set | |
open Univ | |
-- fixes a universe, vs the multiverse definition | |
-- this is an element of Poly | |
record UniverseElement (π° : Univ) : Set where | |
constructor _β_ | |
field | |
ty : π° .U | |
elem : (π° .El) ty | |
open UniverseElement | |
β¦_β§ : Univ β Set | |
β¦_β§ = UniverseElement | |
open import Data.Product | |
open import Relation.Binary.PropositionalEquality | |
open types | |
π°β : Univ | |
π°β .U = Typeβ | |
π°β .El = Elβ | |
π°β : Univ | |
π°β .U = Typeβ | |
π°β .El = Elβ | |
-- set of universe elements with a particual type | |
pick : {π° : Univ} β (type : π° .U ) β Set | |
pick {π°} type = Ξ£ β¦ π° β§ (Ξ» e β ty e β‘ type) | |
_ : pick {π°β} (π β π) | |
_ = ((π β π) β Ξ» b β b) , refl | |
open import Data.Nat | |
_ : β¦ π°β β§ | |
_ = ((π & π) β π) β Ξ»{(n , m) β n + m} | |
data β₯ : Set where | |
data β€ : Set where tt : β€ | |
{- | |
nary' : β β Univ β Set | |
nary' zero π° = π° .U --β¦ π° β§ | |
nary' (suc n) π° = π° .U Γ nary' n π° --β¦ u β§ Γ nary' n u | |
nary : β β Univ β Set | |
nary zero π° = β€ | |
nary (suc n) π° = nary' n π° | |
_ : nary 3 π°β | |
_ = π , (π , π) | |
-} | |
open import Data.Product | |
open import Data.Bool | |
nary' : β β Univ β Set | |
nary' zero π° = β¦ π° β§ | |
nary' (suc x) π° = β¦ π° β§ Γ nary' x π° | |
nary : β β Univ β Set | |
nary zero π° = β€ | |
nary (suc n) π° = nary' n π° | |
record DSL (π° : Univ) : Set where | |
field | |
β± : β(n : β) β nary n π° β β¦ π° β§ | |
open DSL | |
hmm : DSL π°β | |
hmm .β± zero x = {! !} | |
hmm .β± (suc n) x = {! x !} | |
module multi where | |
record Univ : Setβ where | |
field | |
U : Set | |
El : U β Set | |
open Univ | |
record MultiverseElement : Setβ where | |
constructor _β_β_ | |
field | |
π° : Univ | |
ty : π° .U | |
elem : (π° .El) ty | |
open import Data.Nat | |
open import Data.String | |
open import Data.Bool | |
open import Function hiding (_β_) | |
data Typesβ : Set where π π : Typesβ | |
data Typesβ : Set where | |
π€ : Typesβ | |
_β_ : Typesβ β Typesβ β Typesβ | |
Uβ : Univ | |
Uβ .U = Typesβ | |
Uβ .El π = Bool | |
Uβ .El π = β | |
Uβ : Univ | |
Uβ .U = Typesβ | |
Uβ .El = El' | |
where | |
El' : Typesβ β Set | |
El' π€ = String | |
El' (x β y) = El' x β El' y | |
ex : MultiverseElement | |
ex = Uβ β (π€ β π€) β (Ξ» s β s ++ "foo") | |
ex2 : MultiverseElement | |
ex2 = Uβ β π β false |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment