Created
March 14, 2024 19:27
-
-
Save bond15/dbbf6946742e5fbc2f07038bb640ae58 to your computer and use it in GitHub Desktop.
Lawvere Fixpoint Theorem
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{-# OPTIONS --cubical #-} | |
module lfpt where | |
open import Cubical.Data.Unit renaming (Unit to ⊤) | |
open import Cubical.Data.Sigma | |
open import Cubical.Foundations.Prelude | |
_∘_ : {A B C : Set₀} → (B → C) → (A → B) → A → C | |
g ∘ f = λ a → g (f a) | |
record point-surj {X Y : Set₀} (φ : X → Y) : Set₀ where | |
field | |
ps : ∀ (q : ⊤ → Y) → Σ (⊤ → X) λ p → φ ∘ p ≡ q | |
record hasFP {X : Set₀} (f : X → X) : Set₀ where | |
field | |
s : ⊤ → X | |
fp : s ≡ f ∘ s | |
{-# TERMINATING #-} -- obviously not terminating | |
fix' : {A B : Set} → A → (A → B) | |
fix' a = fix' a a | |
{-# TERMINATING #-} -- obviously not terminating | |
fix : {A B : Set} → (f : B → B) → A → (A → B) | |
fix f a = f ∘ fix f a | |
Lfpt : {A B : Set₀} → (φ : A → (A → B)) → point-surj φ → ∀(f : B → B) → hasFP f | |
Lfpt {A} {B} φ φps f = prf where | |
δ : A → A × A | |
δ a = a , a | |
eval : A × (A → B) → B | |
eval (a , f) = f a | |
id×φ : A × A → A × (A → B) | |
id×φ (a1 , a2) = a1 , (φ a2) | |
-- A→B : A → B | |
-- A→B = ((f ∘ eval) ∘ id×φ ) ∘ δ | |
-- fixpoint combinator | |
-- because we have φ a ≡ A→B' from the pointwise surjection | |
A→B' : A → B | |
A→B' a = f (φ a a) | |
-- how is this step justified? | |
-- Hom[1 , B^A] ≅ Hom[1×A , B] ≅ Hom[A , B] ? | |
⊤AB : ⊤ → (A → B) | |
⊤AB tt = A→B' | |
ps : Σ (⊤ → A) λ p → φ ∘ p ≡ ⊤AB | |
ps = point-surj.ps φps ⊤AB | |
⊤A : ⊤ → A | |
⊤A = ps .fst | |
-- the particular choice of A from the pointwise surjection | |
a : A | |
a = ⊤A tt | |
pprf : φ ∘ ⊤A ≡ ⊤AB | |
pprf = ps .snd | |
pprf' : φ a ≡ A→B' | |
pprf' = funExt⁻ pprf tt | |
pprf'' : φ a a ≡ A→B' a | |
pprf'' = funExt⁻ pprf' a | |
pprf''' : φ a a ≡ f (φ a a) | |
pprf''' = φ a a ≡⟨ pprf'' ⟩ | |
A→B' a ≡⟨ refl ⟩ | |
(f (φ a a)) ∎ | |
s : ⊤ → B | |
--s = A→B' ∘ ⊤A | |
s tt = f(φ a a) | |
prf : hasFP f -- f(φ (⊤A tt) (⊤a tt)) = f (f φ (⊤A tt) (⊤A tt)) | |
prf = record { s = s ; fp = funExt λ{ tt → | |
f(φ a a) ≡⟨ cong f pprf''' ⟩ | |
f(f (φ a a)) ∎ } } | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment