Last active
June 14, 2020 18:43
-
-
Save borgwang/2859dec4a5149ac55d665ae175b25a40 to your computer and use it in GitHub Desktop.
backpropagation with numpy
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
from sklearn.datasets import load_iris | |
def softmax(inputs): | |
return np.exp(inputs) / np.sum(np.exp(inputs), 1)[:, None] | |
def construct_net(in_dim, out_dim, hidden_dim=20): | |
bound1 = np.sqrt(6.0 / (in_dim + hidden_dim)) | |
W1 = np.random.uniform(-bound1, bound1, size=[in_dim, hidden_dim]) | |
b1 = np.zeros(20) | |
bound2 = np.sqrt(6.0 / (hidden_dim + out_dim)) | |
W2 = np.random.uniform(-bound2, bound2, size=[hidden_dim, out_dim]) | |
b2 = np.zeros(3) | |
return [W1, b1, W2, b2] | |
def propagate(batch_X, batch_y, params): | |
# one-hot label | |
labels = np.zeros((len(batch_X), 3)) | |
for i in range(len(batch_y)): | |
labels[i][batch_y[i]] = 1 | |
# forward | |
W1, b1, W2, b2 = params | |
h1 = np.dot(batch_X, W1) + b1 | |
a1 = np.copy(h1) | |
a1[a1 < 0.0] = 0.0 | |
h2 = np.dot(a1, W2) + b2 | |
p = softmax(h2) | |
# NLL loss | |
loss = np.mean(-np.log(np.sum(p * labels, 1))) | |
# backward | |
dl_dh2 = p - labels # [batch, 3] | |
dl_dW2 = np.dot(a1.T, dl_dh2) | |
dl_db2 = np.sum(dl_dh2, 0) | |
dl_da1 = np.dot(dl_dh2, W2.T) | |
da1_dh1 = (h1 > 0).astype(float) | |
dl_dh1 = dl_da1 * da1_dh1 | |
dl_dW1 = np.dot(batch_X.T, dl_dh1) | |
dl_db1 = np.sum(dl_dh1, 0) | |
return p, loss, [dl_dW1, dl_db1, dl_dW2, dl_db2] | |
def main(): | |
# prepare dataset | |
iris = load_iris() | |
dataset = iris.data | |
dataset -= np.mean(dataset) | |
dataset /= np.std(dataset) | |
data_size = len(dataset) | |
test_size = int(0.2 * data_size) | |
test_idxs = np.random.randint(0, data_size, test_size) | |
train_idxs = np.array([i for i in range(data_size) if i not in test_idxs]) | |
train_X = dataset[train_idxs] | |
train_y = iris.target[train_idxs] | |
test_X = dataset[test_idxs] | |
test_y = iris.target[test_idxs] | |
params = construct_net(4, 3) | |
# train | |
batch_size = 16 | |
leanring_rate = 0.003 | |
running_loss = 0 | |
for step in range(1000): | |
batch_idx = np.random.randint(0, len(train_X), size=batch_size) | |
batch_X = train_X[batch_idx] | |
batch_y = train_y[batch_idx] | |
_, loss, grads = propagate(batch_X, batch_y, params) | |
if running_loss: | |
running_loss = 0.9 * running_loss + 0.1 * loss | |
else: | |
running_loss = loss | |
# update params | |
for i in range(len(params)): | |
params[i] -= leanring_rate * grads[i] | |
if step % 50 == 0: | |
print(step, running_loss) | |
# evaluate | |
predict, eval_loss, _ = propagate(test_X, test_y, params) | |
predict = np.argmax(predict, 1) | |
count = 0.0 | |
for i in range(test_size): | |
if predict[i] == test_y[i]: | |
count += 1.0 | |
print(eval_loss) | |
print(count / test_size) | |
if __name__ == '__main__': | |
main() |
@zchrissirhcz 感谢指出。
- h 是 logits,p 是预测概率,已修正
- 由于 labels 是 one-hot 的,两种实现是等效的
- loss function 严格来说应该是定义在一个数据点上,只是在 DL 中 mini-batch 训练比较常见,有时候也会把 batch_size 写进去
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
你好,borgwang
我看了你的博客 A Step-by-Step Neural Net Example ,并对照这里贴出的程序进行比对,认为文章中NLL Loss的描述以及这里的实现有问题。
代码中计算NLL的实现:
应该改成
此外,NLL的公式,应该把batch size也考虑进去